Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.
2
2
Câu 2.√[3-c] Giá trị nhỏ nhất và giá trị
số f (x) = 2sin x + 2cos x lần lượt là
√ lớn nhất của hàm √
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
Câu 3. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 4. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.
D. 6.
Câu 5. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
D. 30.
C. 12.
Câu 6. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
.
D. P =
.
A. P = 2i.
B. P = 2.
C. P =
2
2
Câu 7. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R \ {0}.
D. D = R.
Câu 8. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
√
√
Câu 9. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√
√
A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 10. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 11. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z 0
u (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
q
2
Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 13. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Trang 1/4 Mã đề 1
Câu 14. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 3.
B. 2.
C. 1.
D.
.
3
9t
Câu 15. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vơ số.
C. 0.
D. 2.
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
2a3 3
4a3 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Z 1
Câu 17. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
1
.
4
π π
Câu 18. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
B. 1.
C. 0.
D.
3
Câu 19. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e.
C. e5 .
D. e3 .
√
Câu 20. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.
Câu 21. Các khẳng định nào sau đây là sai?
!0
Z
Z
Z
A.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 22. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
e
D. 3.
Câu 23. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (III).
D. (I) và (II).
Câu 24. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Trang 2/4 Mã đề 1
Câu 25. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B.
D. a 3.
A. 2a 6.
.
C. a 6.
2
Câu 26. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
.
B. a3 3.
C.
.
D.
.
A.
4
2
2
Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
2x + 1
x→+∞ x + 1
1
B. .
2
C. Khối bát diện đều.
D. Khối 20 mặt đều.
C. 2.
D. 1.
Câu 29. Tính giới hạn lim
A. −1.
Câu 30. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 31. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
Câu 32. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 12.
D. 8.
Câu 33. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.
B. −∞.
C. +∞.
un
bằng
vn
D. 1.
Câu 34. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 35. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 36. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.
B. y = x3 − 3x.
C. y =
x−2
.
2x + 1
1
D. y = x + .
x
Câu 37. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 2.
Câu 38. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.
B. 7.
Câu 39. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Trang 3/4 Mã đề 1
x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. − .
C. −∞.
D. .
5
5
Câu 41. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 40. Tính lim
log 2x
là
Câu 42. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
x3
x3 ln 10
2x3 ln 10
1
.
2x3 ln 10
8
Câu 43. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
D. y0 =
Câu 44. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
2
3
7n − 2n + 1
Câu 45. Tính lim 3
3n + 2n2 + 1
2
7
A. 0.
B. - .
C. .
D. 1.
3
3
Câu 46. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 47. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
36
24
6
12
Câu 48. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2
2
2
2
3
4
x y−2 z−3
x y z−1
C. =
=
.
D. = =
.
2
3
−1
1 1
1
√
Câu 49. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 50. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
Trang 4/4 Mã đề 1
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
2. A
5.
D
6.
7.
D
8.
C
9.
11.
D
4.
B
B
D
10. A
B
C
12.
13. A
15.
D
17. A
14.
B
16.
B
18.
19.
C
C
20. A
21.
D
22.
23.
D
24.
C
26.
C
25.
C
27.
31.
28.
D
29.
C
D
30. A
B
32.
33. A
C
34. A
D
35.
C
36.
37.
B
38.
39.
B
40.
41.
B
42.
43.
B
44. A
45.
B
46.
47.
D
D
B
D
B
C
48.
49. A
50.
1
D
B