Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (101)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.

C. 7.

D. 0.

Câu 2. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 8 3.
C. 7 3.
D. 16.
A. 8 2.
1
Câu 3. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1


0
y
0
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 4. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞
y

Câu 5. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C. 18.

D.
.
2
Câu 6. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B. 2.
C. 1.
D.
.
A. .
2
2
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.
x+2
đồng biến trên khoảng
Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 3.
D. 2.
x

Câu 9. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
Câu 10. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 = .
B.
.
C. y0 =
.
D. y0 =
.
x
10 ln x
x
x ln 10
Câu 11. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

4a3 3
2a3
4a3
2a3 3

A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 12. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
a2 5
a2 7
11a2
a2 2
A.
.
B.
.
C.
.
D.

.
16
8
32
4
1 − 2n
Câu 13. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
Trang 1/4 Mã đề 1


Câu 14. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 8.

D. 12.


Câu 15.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 16. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
2
Câu 17. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2

B. m = ±3.
C. m = ± 3.
D. m = ±1.
A. m = ± 2.

Câu 18. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. 5.
C. −5.
2

D. −6.

Câu 19. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 20. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
4035
2016
A.
.
B.
.

C. 2017.
D.
.
2018
2018
2017
Câu 21. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
2
9
4
x2 − 9

Câu 22. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. −3.
D. +∞.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
4a3 3
8a3 3
a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
!x
1
1−x

Câu 24. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. − log3 2.
Câu 25. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log π4 x.
Câu 26. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 2/4 Mã đề 1


A. Câu (III) sai.
Câu 27.
A. 13.
Câu 28.
A. 2.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
B. Khơng tồn tại.
C. 9.
D. 0.
5
Tính lim
n+3
B. 0.
C. 1.
D. 3.

Câu 29. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.
1

Câu 30. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 31. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là

C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 33. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3

2
6
Câu 34. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 35. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
.
D.
.
C.
3
2
2
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5

a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 37. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −7.
C.
.
D. −4.
27

Câu 38. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 62.
D. 64.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể

√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
Câu 40. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 3/4 Mã đề 1


B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 41. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2

2
Câu 42. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. .
A. 5.
B. 5.
5
Câu 43. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 30.


ab.



D. 25.
D. 12.

Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
1
Câu 45. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
3

2

Câu 46. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
log 2x

Câu 47. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
.
B. y0 = 3
.
C. y0 =
A. y0 = 3
.
2x ln 10
x ln 10
x3

Câu 48. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
C. 2.
A. −2.
B. .
2


Câu 49. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 3.
B. 2 3.
C. 3 2.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

1
D. − .
2
D. 2 +


3.

Câu 50. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5

d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4. A
C

5.


6.

7. A
9.

D
C

11.

D

19.

D

10.

D

C

16.

C

18.

C


22.

23.

C

24. A

25.

C

26.
D

28.

29. A
31.

D

20. A

21. A

27.

B


14.

15. A
17.

B

8.
12.
D

13.

D

B
C
B

30. A
B

33.

32.
C

34.


C
B

35. A

36.

C

37. A

38.

C

39.
41.

C

40.
42.

B

43. A

49.

D


44. A

45.
47.

B

D

46.

C
B

48. A
50.

C

1

B



×