Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (153)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.95 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 1. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
8a3 3
4a3 3
a3 3
8a3 3
A.
.
B.


.
C.
.
D.
.
9
9
9
3
Câu 3. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 4. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 5. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 30.


D. 20.

Câu 6. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
Câu 7. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.

D. Khơng tồn tại.

1
Câu 8. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 1.
B. 4.
C. 3.
D. 2.
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp S .ABCD là


3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
12
6
4
log2 240 log2 15
Câu 10. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 11. Xét hai câu sau
Z
Z
Z
(I)

( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Chỉ có (I) đúng.
Trang 1/4 Mã đề 1


Câu 12. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C.
A. 2a 6.
.
D. a 3.
2
Câu 13. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .

B. 27cm3 .
C. 46cm3 .
D. 64cm3 .
Câu 14. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 15. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 16. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
1 − n2
bằng?
Câu 17. [1] Tính lim 2
2n + 1
1
B. 0.
A. .
2

1
1

.
D. − .
3
2
x−3 x−2 x−1
x
Câu 18. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
! x3 −3mx2 +m
1
Câu 19. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).

C.

d = 60◦ . Đường chéo
Câu 20. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3
3

2a
6
a
6
4a
6
B.
.
C.
.
D.
.
A. a3 6.
3
3
3
Câu 21. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
2
6
Câu 22. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. − .
C. .
2
2

D. −2.
Trang 2/4 Mã đề 1



Câu 23. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
2
Câu 24. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 3.
D. m = ±3.
A. m = ±1.
B. m = ± 2.
1 − 2n
Câu 25. [1] Tính lim
bằng?
3n + 1
2
1
2
B. − .
C. 1.
D. .
A. .
3
3
3
Câu 26. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 5.

D. 3.

Câu 27. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.

D. m ≥ 0.

Câu 28. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.
D. Hai mặt.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 29. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 4.
C. 5.
D. 2.
Câu 30. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng



20 3
14 3
.
B. 8 3.
C.
.
D. 6 3.
A.
3
3
3
2
Câu 31. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 32. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
5
7
8
A.
; 0; 0 .

B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
x−1 y z+1
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3

a 3

a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 35. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 16 m.
D. 8 m.
Câu 36. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là



3
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
4
12
2
9
Trang 3/4 Mã đề 1


Câu 37. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.

C. 387 m.
D. 1587 m.
Câu 38. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
9t
Câu 39. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .

A. 1.
B. 0.
C. Vơ số.
D. 2.
Câu 40. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m , 0.

D. m = 0.

Câu 41. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
3

Câu 42. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
log7 16
Câu 43. [1-c] Giá trị của biểu thức
log7 15 − log7
A. −2.
B. −4.
Câu 44. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.


2

C. 144.
15
30

D. 4.

bằng
C. 4.

D. 2.

C. 10.

D. 12.

Câu 45. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
D. .
A. 3.
B. 1.
C. .
2
2
Câu 46. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:

A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
x−1
Câu 47. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.
Câu 48. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).

Câu 49. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 50. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 8.

B. 3 3.
C. 27.
D. 9.
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.
5.

2. A

C
B

6. A

7.

D

8. A

9.


D

10. A

11. A
13.

12.
B

15. A
D

17.

D

16.

D

18.

C

20. A

21.


C

22.

23. A
B

B

28.

B

30.

B
D

32. A

33.

D

34.

35.

C


C
B
C

47. A
49.

D
D
B

38.
D

41.
45.

36.

B

39.
43.

D

26.

31.


37.

C

24. A

27. A
29.

B

14.

19.

25.

D

4.

C

1

D

40.

C


42.

C

44.

B

46.

B

48.

B

50.

B



×