Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (357)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.59 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

2n − 3
bằng
Câu 1. Tính lim 2
2n + 3n + 1
A. 1.
B. −∞.

C. +∞.

D. 0.

Câu 2. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
d = 30◦ , biết S BC là tam giác đều
Câu 3. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách


√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
16
13
ln x p 2
1
Câu 4. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .

D. .
3
9
9
3
!2x−1
!2−x
3
3
Câu 5. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
D. [1; +∞).
Câu 6. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
Câu 7. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.


D. x = 0.

Câu 8. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].

Câu 9. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.


D. 3 − 4 2.

Câu 10.√Biểu thức nào sau đây khơng có nghĩa
B. 0−1 .
A. (− 2)0 .

D.

C. (−1)−1 .

Câu 11.

bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
.
B. .
C.
.
A.
2
4
4
x2 − 9
Câu 12. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. 3.


−1.

−3


3
D.
.
12


D. −3.

Câu 13. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = 2 x . ln 2.
D. y0 =
.
A. y0 = 2 x . ln x.
B. y0 = x
2 . ln x
ln 2
0 0 0 0
0
Câu 14.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.

.
7
2
2
3
Trang 1/4 Mã đề 1


Câu 15. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 16. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (I) và (III).

Câu 17. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.


2
Câu 18.

√ Xác định phần ảo của số phức z = ( 2 + 3i)
B. 7.
C. −6 2.
A. 6 2.

D. (II) và (III).
D. 144.
D. −7.

Câu 19. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 10 mặt.

D. 4 mặt.



x=t




Câu 20. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 21. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40

C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
x−3 x−2
x−3
x−2
Câu 22. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.

Câu 23. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 6.
D. 108.
log2 240 log2 15
Câu 24. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.

B. −8.
C. 3.
D. 4.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 25. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Trang 2/4 Mã đề 1


Câu 26. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 27. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √
3

a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12
Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 29. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.

D. .
A. .
8
4
2
Câu 30.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 31. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.





2 − 1 − 3i lần lượt √l

B. Phần thực là 2, √
phần ảo là 1 − √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.

D. e.

Câu 33. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

D. 12.

C. 8.

Câu 34. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.

C. 3.
D. 6.


4n2 + 1 − n + 2
Câu 35. Tính lim
bằng
2n − 3
3
A. +∞.
B. 2.
C. .
D. 1.
2
Câu 36. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 37. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 38. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.

D. −5.
Câu 39. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 3/4 Mã đề 1


Câu 40. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 41. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. 2.
C. 1.
D. −1.
2
! x3 −3mx2 +m
1
Câu 42. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)

A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.
8
Câu 43. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 64.
D. 81.
Câu 44.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z

Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 45. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 46. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 7 3.
C. 8 3.
D. 8 2.
Câu 47. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
C. − .
A. − .
2e

e
e
Câu 48. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
Câu 49. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n

C.

n+1
.
n

D. −e.
D. 12.
1
D. √ .
n

Câu 50. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1

A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4.

5.


D

6.

D

8.

D

7.

B

9.

C

10.

11.

C

12. A

13.

C


14.

15.

C

16. A
D

17.

B
D

18. A

19.

B

20. A

21.

B

22. A

23.


B

24.

B

26.

25. A
27.
29.

C

D

28.

B

31. A

D
B

30.

D

32.


D

33.

D

34.

C

35.

D

36.

C

37.

B

38. A

39.

C

40.


41.

C

42.

43.
45.

D

44.

D
B

46. A

B

47. A
49.

C

48.
50.

C


1

B
D



×