Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg c4 (220)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.07 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?


A. Một mặt.
B. Hai mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 3. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. − .
D. 2.
2
2
Câu 4. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 5. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng



a 3
2a 3
a 3
.
B.
.
C.

.
D. a 3.
A.
2
3
2
0 0 0
Câu 6. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 2.
C. 1.
D. 3.
3
Câu 7. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 8. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.


B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng

√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp S .ABCD là
3

a 3
a 2
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
6
4
12
Câu 10. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.

D. 6510 m.
0 0 0
d = 60◦ . Đường chéo
Câu 11. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0

Trang 1/4 Mã đề 1




2a3 6
4a3 6
A.
.
B.
.
3
3
Câu 12. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.


a3 6
C.
.
3



D. a3 6.

C. 2.

D. 5.

Câu 13. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 15. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3

(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
x−1 y z+1
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
tan x + m
Câu 17. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π

0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).

Câu 18. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. Vơ nghiệm.
Câu 19. Tính lim
x→5

x2 − 12x + 35
25 − 5x
B. −∞.

2
2
.
D. − .
5
5
x
y
Câu 20. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.

B. 27.
C. 12.
D.
.
2
d = 30◦ , biết S BC là tam giác đều
Câu 21. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
16
13
2x + 1
Câu 22. Tính giới hạn lim
x→+∞ x + 1

1
A. .
B. 2.
C. −1.
D. 1.
2
A. +∞.

C.

Trang 2/4 Mã đề 1


2n + 1
Câu 23. Tính giới hạn lim
3n + 2
2
1
A. .
B. .
3
2

C.

3
.
2

D. 0.


Câu 24. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 9 mặt.

D. 8 mặt.

Câu 25. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 81.

B. 64.

Câu 26. Tính lim
x→2

A. 1.

x+2
bằng?
x
B. 3.

C. 82.

D. 96.

C. 2.

D. 0.


8
x

Câu 27. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 28. Khối đa diện đều loại {5; 3} có số cạnh

A. 30.
B. 12.

C. 8.

D. 20.

Câu 29. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−3; 1].
D. [−1; 3].
Câu 30. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
; +∞ .
A. − ; +∞ .
B.
C. −∞; − .
2
2
2

!
1
D. −∞; .

2

Câu 31. Mệnh đề
!0 nào sau đây sai?
Z
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
1
1
1
Câu 32. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

f (x)dx = F(x) + C.

!

3
C. .
2

Câu 33. Thể tích của khối lập phương có cạnh bằng a 2 √

2a3 2

A. 2a3 2.
B. V = 2a3 .
C.
.
3
A. 2.

B. 1.

D. 0.


D. V = a3 2.

Câu 34. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn

D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 3/4 Mã đề 1


Câu 35. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.

D. {3; 3}.

Câu 36. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 37. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
B.
D.
A. 6 3.
.
C. 8 3.

.
3
3
x2 − 5x + 6
Câu 38. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
1
Câu 39. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. 2.
D. −1.
! x3 −3mx2 +m
1
Câu 40. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m = 0.
D. m ∈ R.
2mx + 1
1

Câu 41. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
4a3 3
a3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 43. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = R.

2

D. D = [2; 1].

Câu 44. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
36
6
[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 46. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 10.

Câu 47. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6

πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 48. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Trang 4/4 Mã đề 1



Câu 49. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

C. 4.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
C.
A.

.
B. a3 3.
.
D.
.
2
2
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

5.


B

6.

B

8.

B

7.
9.

D
D

17.

C

14.

B

18.
C

21.

D


16.

C

19.

D

12. A

B

15.

D

10.

B

11.
13.

C

B

20. A
D


22.

B

23. A

24.

C

25. A

26.

C

27. A

28. A

29.

C

30. A

31.

C


32.

33. A

34.

35. A

36. A

37. A

38.

39.

B
D

49.

D
C

42. A

C

45.

47.

C

40.

41.
43.

B

D

44.

B

46.

B

48.

C
D

50. A

1


D



×