Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (704)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.79 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n

x2 − 12x + 35
Câu 2. Tính lim
x→5
25 − 5x
2
2
A. − .
B. +∞.
C. .
D. −∞.
5


5
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 4. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
a3 3

5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
x2 − 3x + 3
đạt cực đại tại
Câu 5. Hàm số y =
x−2
A. x = 2.
B. x = 1.
C. x = 3.
D. x = 0.
Câu 6. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.

Câu 7. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

C. 12.

D. 10.

Câu 8. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 10. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.
Câu 11. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.


D. 0.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Câu 12. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.
Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a bằng
1
1
A. − .
B. .
C. 2.
2
2

D. 0, 8.

2

D. −2.
Trang 1/4 Mã đề 1


Câu 14. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. −2.


D. 4.

Câu 15. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a 3
4a 3
2a3
4a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 16. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.

C. 1134 m.
D. 6510 m.



x = 1 + 3t




Câu 17. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x = 1 + 3t
x = −1 + 2t
x = 1 + 7t
x = −1 + 2t
















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .

















z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 18. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
x−2
Câu 19. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
Câu 20. [1] Tính lim
x→3


A. −∞.

x−3
bằng?
x+3
B. 1.

C. 10.

D. 6.

C. 2.

2
D. − .
3
D. +∞.

C. 0.
x

!

!

4
1
2
2016
Câu 21. [3] Cho hàm số f (x) = x

. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
A. T =
2017
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n

1
C. √ .
n

D.

!


n+1
.
n

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. −1.
B. 1.
C. 2.
D. .
2



x=t




Câu 24. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I

thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 23. [2-c] Cho hàm số f (x) =

Trang 2/4 Mã đề 1


Câu 25. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 1.

D. 3.


Câu 26. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.

D. 2 nghiệm.

Câu 27. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
D. 27.

3
2
Câu 28. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
Câu 29. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 25 m.
D. 387 m.

x+1
bằng
Câu 30. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
Câu 31. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 32. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 5.
A. 34.
B. 68.

C.
17
3
2
Câu 33. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. R.
D. (2; +∞).
Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

C. (I) và (III).

D. Cả ba mệnh đề.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey − 1.

D. xy0 = ey − 1.

Câu 35. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 36.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα+1
x dx =
+ C, C là hằng số.
α+1
α

B.
Z
D.

0dx = C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 37. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Trang 3/4 Mã đề 1


Câu 38. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2


ab.

Câu 39. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.

B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
x3 − 1
Câu 40. Tính lim
x→1 x − 1
A. −∞.
B. +∞.

C. 3.

D. 0.

Câu 41. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

C. |z| = 10.
D. |z| = 10.
A. |z| = 17.
B. |z| = 17.
log2 240 log2 15
Câu 42. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
D. 3.
[ = 60◦ , S O

Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 44. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
1 + 2 + ··· + n
Câu 45. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2

Câu 46. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 47. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. −
.
B.
.
C.
.
D. − .
100
25
100
16
0
Câu 48. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.
Câu 49. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?

A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
2x + 1
x→+∞ x + 1
B. −1.

Câu 50. Tính giới hạn lim
A. 2.

C.

1
.
2

D. 1.

- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.


C

3.

C

4.

C

5.

B

7.
9.

6. A
8.

C
D

12.

13.

D


14.

17.

D

C
D

18. A

19. A

20.

21.

B

22.

23.

B

24.

C
D
B


26.

25. A
27.

C

D

28. A

B

30.

31. A

B

32.
B

34.
D

35.
37.

B


16.

15. A

33.

D

10.

B

11.

29.

B

B

39.

C

41.

D

C

B

36.

C

38.

C

40.

C

42.

C

43.

C

44.

D

45.

C


46.

D

48.

D

47. A
49.

50. A

B

1



×