Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
x3 − 1
Câu 2. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
Câu 3. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
2x + 1
Câu 5. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
2a 3
a3
4a3 3
a
.
B.
.
C.
.
D.
.
A.
3
3
6
3
2
Câu 7. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.
D. 2 − log2 3.
Câu 8. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
D. 9 cạnh.
C. 11 cạnh.
Câu 9. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 6.
B. −1.
C. 1.
3
D. 2.
Câu 10. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 11. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 12. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 1.
B. 3.
C. 2.
D.
.
3
Câu 13. Biểu thức nào sau đây khơng có nghĩa
√
√
−3
A. (−1)−1 .
B. 0−1 .
C. (− 2)0 .
D.
−1.
Trang 1/4 Mã đề 1
Câu 14. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.
D. 12.
!
!
!
x
1
2
2016
4
Câu 15. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017
Câu 16. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Câu 17. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
2
2
Câu 18. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ lượt là
√ Giá trị nhỏ nhất √
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 2 2.
Câu 19. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
1
Câu 20. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D. {4; 3}.
D. 2.
q
Câu 21. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 22. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.
C. 8.
D. 6.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 23. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
3
√
a3 3
a3 3
a
2
A.
.
B.
.
C. 2a2 2.
D.
.
12
24
24
Câu 24. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.
D. m , 0.
Câu 25. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = ln x − 1.
Câu 26. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
d = 30◦ , biết S BC là tam giác đều
Câu 27. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
26
9
Câu 28. Tính mô đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
√
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Câu 29. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
12 + 22 + · · · + n2
Câu 30. [3-1133d] Tính lim
n3
2
A. .
B. 0.
3
C. +∞.
D. 2.
C. +∞.
D.
1
.
3
Trang 2/4 Mã đề 1
√
Câu 31. Tính lim
A.
3
.
2
√
4n2 + 1 − n + 2
bằng
2n − 3
B. 2.
D. +∞.
C. 1.
Câu 32.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 33. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√
√M + m
C. 8 3.
D. 8 2.
A. 16.
B. 7 3.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 35. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 24.
D. S = 135.
Câu 36. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.
Câu 37. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
π π
3
Câu 38. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.
tan x + m
Câu 39. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
√
x2 + 3x + 5
Câu 40. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. − .
D. 0.
4
4
1
Câu 41. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (1; +∞).
Câu 42. [1] Tính lim
x→3
A. −∞.
x−3
bằng?
x+3
B. 1.
Câu 43. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
6
A. un =
.
B. un =
.
n+1
5
C. +∞.
D. 0.
!n
−2
C. un =
.
3
D. un = n2 − 4n.
Trang 3/4 Mã đề 1
Câu 44. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 3.
C. 4.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
Câu 45. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 46. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. aαβ = (aα )β .
C. β = a β .
D. aα+β = aα .aβ .
a
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 47. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vô số.
D. 1.
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
2mx + 1
1
Câu 49. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 1.
D. 0.
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
3
10a
.
C. 40a3 .
D. 20a3 .
A. 10a3 .
B.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4. A
5. A
6.
7.
D
C
D
8. A
9. A
10.
C
11. A
12.
C
13.
B
14.
C
15.
B
16.
C
18.
17. A
19.
20. A
B
21.
C
22.
D
23.
25.
D
C
D
24.
B
26.
C
27. A
28.
C
29. A
30.
31.
C
32.
33. A
35.
34.
38.
C
39.
41.
D
D
B
C
D
44.
D
B
46.
47.
B
48.
D
50.
1
C
42.
45.
49.
B
40.
B
43.
C
36.
B
37.
D
C
B
D