Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (883)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.35 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z

−1 − i 3
−1 + i 3
.
D. P =
.
A. P = 2i.
B. P = 2.
C. P =
2
2
Câu 2. Dãy số nào có giới hạn bằng 0?!
!n
n
6
−2
n3 − 3n
A. un =
.
B. un =


.
C. un =
.
D. un = n2 − 4n.
n+1
5
3
Câu 3. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


18 11 − 29
2 11 − 3
C. Pmin =
. D. Pmin =
.
21
3

Câu 4. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.

9 11 + 19
9 11 − 19

A. Pmin =
. B. Pmin =
.
9
9
Câu 5. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.

C. 10.

D. 6.

Câu 6. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 7. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. .
D. 1.

A. .
2
2
x+1
Câu 8. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
Câu 9. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
Câu 10. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −5.


D. x = −8.

Câu 11. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Trang 1/4 Mã đề 1


Câu 12.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.

Z
Z


!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 13. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 15. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n

A. un =
.
B.
u
=
.
n
n2
5n − 3n2

n2 + n + 1
.
(n + 1)2
x−1 y z+1
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
C. un =

1 − 2n
.

5n + n2

D. un =

Câu 17. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m < .
D. m ≤ .
A. m ≥ .
4
4
4
4
 π
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
B.
C.
D. 1.
e .

e .
2
2
2
Câu 19. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
Câu 20. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 21. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
4a3 3
a3 3
8a3 3
8a3 3

A.
.
B.
.
C.
.
D.
.
9
9
9
3

Câu 23. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Trang 2/4 Mã đề 1


Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng



20 3
14 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
Câu 25. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có vơ số.
Câu 26. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B. 2.
C.
.

D. 2 13.
A. 26.
13
Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 28. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
= −∞.
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim

= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 30. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
C. − .
D. − 2 .
A. −e.
B. − .
e
2e
e
Câu 31. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 32. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 33. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.
D. {4; 3}.
p
ln x

1
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 34. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9
3
2
x
Câu 35. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 36. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
24
12
24
Trang 3/4 Mã đề 1


Câu 37. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −2.
C. −7.
D. −4.
A.
27
Câu 38. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.

C. 20.
D. 8.
1
Câu 39. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Câu 40. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.

C. 0.

D. +∞.

Câu 41.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
6

12



a3 2
a3 2
C.
.
D.
.
4
2
1
Câu 42. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.

Câu 43. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 3.
D. 0, 5.
Câu 44. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.


D. 6 mặt.

Câu 45. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
d = 120◦ .
Câu 46. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2
Câu 47. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 9 cạnh.
[ = 60◦ , S A ⊥ (ABCD).
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3

3
3

a 2
a
3
a 2
A.
.
B.
.
C. a3 3.
D.
.
4
12
6
2n + 1
Câu 49. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. .
D. 0.
2
2
3

Câu 50. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

D

5.

B


6.

D

7. A

C

C

8.

9.

10.

C

11. A

D
C

12.
D

13.

14.


C

15.
17.

B

16. A
D

18.

B

19.

C

20.

C

21.

C

22.

C


24.

C
C

23.

B

25.

C

26.

27.

C

28.

29. A
31.

B

33. A

B


30.

C

32.

C

34. A

35.

B

36.

37.

B

38.

C

39.

B

40.


C

41.

B

42.

43.

44.

C

45. A

D

D
B

46.

47.

C

48. A


49.

C

50.

1

C
B



×