Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c5 (156)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.21 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. 3.
D. .
A. 1.
B. .
2
2
Câu 2. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 3. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. (2; 2).



Câu 4. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.

D. m < 0.
3a
Câu 5. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên
√ mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
3
4
3
Câu 6. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.

C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 7. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 8. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên đúng. C. Cả hai câu trên sai.
2n − 3
Câu 9. Tính lim 2
bằng
2n + 3n + 1
A. 0.

B. +∞.
C. −∞.

D. Chỉ có (II) đúng.

D. 1.

Câu 10. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 11. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 2, 4, 8.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 12. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 2
a2 7
A.

.
B.
.
C.
.
D.
.
16
32
4
8
Trang 1/4 Mã đề 1


4

Câu 13. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
5
A. a 3 .
B. a 3 .
C. a 8 .
Câu 14. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

C. 12 cạnh.

√3


a2 bằng
7

D. a 3 .
D. 11 cạnh.

Câu 15. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 16. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 17.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 1.
C. 2.
D. 10.
A. 2.
Z 1
Câu 18. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.
C. 0.
D. .
4
2

d = 30 , biết S BC là tam giác đều
Câu 19. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39

a 39
A.
.
B.
.
C.
.
D.
.
26
16
9
13
Câu 20. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.
D. (−∞; 1).
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 21. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 22. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
12
6
4
1 − xy
Câu 23. [12210d] Xét các số thực dương x, y thỏa mãn log3

= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 + 19
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 24. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
D. (0; 2).
Câu 25. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
x2 − 9

Câu 26. Tính lim
x→3 x − 3
A. −3.
B. 6.

C. 3.

D. +∞.
Trang 2/4 Mã đề 1


8
Câu 27. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 64.
D. 81.
Câu 28. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

Câu 29. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.


C. 3.

C. 5.

D. 1.

D. 7.

Câu 30. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vơ số.
C. 3.
D. 2.
1
Câu 31. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 32. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1


!n
−2
C. un =
.
3

!n
6
D. un =
.
5

Câu 33. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5; 2}.
D. {5}.
Câu 34. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m > 0.

D. m ≥ 0.

Câu 35. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.

B. 12 năm.
C. 10 năm.
D. 13 năm.
Câu 36. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

Câu 37. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = x
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
2 . ln x
Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − 2 .
C. − .
e
2e
Câu 39. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.

C. x = 0.

D. Cả hai đều đúng.
D. y0 =

1
.
ln 2

1
D. − .
e
D. x = −8.
Trang 3/4 Mã đề 1


Câu 40. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
2mx + 1
1
Câu 41. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. 0.

D. −5.
Câu 42.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 2.
C. 1.
D. 5.
Câu 43.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3

!n
5
C. − .
3

!n
4
D.
.
e


Câu 44. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.
D. 2.


Câu 45. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 2, phần ảo là 1 − 3.
Câu 46. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
Câu 47. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

Câu 48.

Z Các khẳng định
Z nào sau đây là sai?

k f (x)dx = k
f (x)dx, k là hằng số.
!0
Z
f (x)dx = f (x).
C.
A.

Z
B.
Z
D.

D. y0 = ln x − 1.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.


Câu 49. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
a3 3
a3 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B

3. A

4. A

5.

D

6.

7.

D

8.

D
B


9. A

10.

11. A

12.

13. A

14.

B

16.

B

15.
17.

C

C
D

D

18.


B

19.

D

20.

21.

D

22. A

23.

D

24.

B

25.

D

26.

B


27.

D

28.

B

29.

32.

33.
37.

D

34.

B
C
D

C

40.

C
B


44.

45.
49.

B

38.
42.

C

43. A
47.

C

36. A

39.
41.

D

30.

B

31. A
35.


B

D
C
D

46.

B

48.

B

50. A

1

C



×