Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg c5 (700)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.67 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 2. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích
√ thước
√ của hình hộp là


A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
d = 30◦ , biết S BC là tam giác đều
Câu 3. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
13
26
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp


√ S .ABCD là
3
3
3

a 3
a 3
a 2
.
B. a3 3.
.
D.
.
A.
C.
2
2
4
1 − n2
bằng?
2n2 + 1
1
1
A. 0.
B. − .
C. .
2
3
log2 240 log2 15
Câu 6. [1-c] Giá trị biểu thức


+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 3.
!
1
1
1
Câu 7. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
A. .
B. +∞.
C. 2.
2
Câu 5. [1] Tính lim

D.

1
.
2

D. 4.

D.


3
.
2

Câu 8. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.

D. Câu (III) sai.

Câu 9. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Trang 1/4 Mã đề 1


Câu 10. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động

3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 11. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.

D. 3 mặt.

Câu 12. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D. Năm cạnh.

Câu 13. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x


2
B. − .
5

C. +∞.

D.
4

Câu 14. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
5
2
A. a 3 .
B. a 3 .
C. a 3 .
Câu 15.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

√3

2
.
5

a2 bằng

5

D. a 8 .
!0

Z

f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 16. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2


C. un =

n2 − 2
.
5n − 3n2

D. un =

n2 − 3n
.
n2

Câu 17. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 18. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 19. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 20. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 21. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

Câu 23. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.

C. 10.

D. {3; 3}.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 22. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
D. 8.
Trang 2/4 Mã đề 1



Câu 24.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
1
x
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
A.
xα dx =
α+1
Z
Z x
C.

0dx = C, C là hằng số.

Câu 25. Tìm
√ giá trị lớn nhất của√hàm số y =
A. 2 + 3.
B. 2 3.

D.


dx = x + C, C là hằng số.


x+3+ 6−x
C. 3.



D. 3 2.

Câu 26. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 27. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m

=
triệu.
(1, 01)3 − 1
3
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 28. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 29. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 30. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1

1
8
8
B. .
C. .
D. .
A. .
9
3
9
3
Câu 31. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
Câu 32. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
C. 8.
D. 12.
9x
Câu 33. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .

B. −1.
C. 1.
D. 2.
2
Câu 34. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3 3
a3
a3 3
3
A.
.
B. a .
C.
.
D.
.
6
3
2
Z 3
x
a
a
Câu 35. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
Trang 3/4 Mã đề 1


A. P = 28.

B. P = 16.

C. P = −2.

D. P = 4.

Câu 36. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. e.

Câu 38. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
Câu 39. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 40. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 41. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.


D. 3 mặt.

Câu 42. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a =
log2 a
loga 2
1

Câu 43. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. 2

.
D. √
.
A. √
.
C. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 45. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 20.

D. 30.

Câu 46. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b


C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 47. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
1
Câu 48. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 2.
D. 1.
Trang 4/4 Mã đề 1




Câu 49. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
cos n + sin n
Câu 50. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3.
5.

2. A


B

4. A

B

7.

6. A
8.

C
D

9.

10. A

12.

C

13.

14.

C

15. A


16.

B

17.

18.

B

19. A

20. A
22.

21.
B

24. A
26.

B

B

D
C
B


23.

D

25.

D

27.

28.

C

30. A

31.

C

32. A

33.

C

34.

35.


D

36.

37.

D

38. A

C

D
C

39.

C

40.

D

41.

C

42.

D


44.

D

43.
45.

D
C

46.
48.

47. A
49.

B

C

50.

1

D
C




×