Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. !Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3
!n
5
C. − .
3
!n
4
D.
.
e
Câu 2. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 3. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
8
5
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Câu 4. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
a3 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 5. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 1.
C. 3.
D. Vơ số.
Câu 6. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 7. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −7.
D. −3.
Câu 8. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
D. 8.
C. 30.
Câu 9. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (III).
√
Câu 10. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
√
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
4
12
Câu 11. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 0.
D. 2.
Trang 1/4 Mã đề 1
Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.
x = 1 + 3t
Câu 13. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+
7t
x = −1 + 2t
A.
C.
.
D.
y = −10 + 11t . B.
y = 1 + 4t .
y=1+t
y = −10 + 11t .
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 14. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
log(mx)
Câu 15. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 16. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 17. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 18. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 19. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
log 2x
là
Câu 20. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
A. y0 = 3
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 21. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 23. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Trang 2/4 Mã đề 1
Câu 24. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
C. a 3.
D. a 6.
A.
.
B. 2a 6.
2
√
√
Câu 25. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 26. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
1
Câu 27. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.
log(mx)
Câu 28. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 29. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 30. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 5
11a
a2 2
a 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
ln x p 2
1
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 32. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
4
2
8
3
2
Câu 33. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−1; 3].
D. [−3; 1].
a
1
Câu 34. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
log 2x
Câu 35. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
2x3 ln 10
x3 ln 10
2x3 ln 10
x3
Câu 36. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Trang 3/4 Mã đề 1
Câu 38. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 39. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
Câu 40. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
D. 12.
[ = 60◦ , S O
Câu 41. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
B.
A. a 57.
.
C.
.
D.
.
19
17
19
Câu 42. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 43. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 44. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 45. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −2.
D. x = −5.
x2
Câu 46. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.
D. 1 − log3 2.
Câu 47. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 2.
D. +∞.
C. 3.
−2x2
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = xe
trên đoạn [1; 2] là
1
1
1
C. 2 .
B. √ .
A. 3 .
2e
e
2 e
√
√
Câu 49. Tìm
√ giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 2 + 3.
B. 3 2.
C. 2 3.
D.
2
.
e3
D. 3.
Câu 50. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
1
= 0 với k > 1.
nk
1
D. lim √ = 0.
n
B. lim
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
D
3.
4. A
5. A
7.
6.
8. A
B
9. A
10. A
11.
D
12.
13. A
14.
15.
D
16.
17.
D
18.
19. A
C
B
D
B
20. A
21.
D
22.
23.
D
24.
25.
D
26.
27. A
28. A
29. A
30. A
31. A
32. A
33.
35.
B
D
B
D
37.
B
D
C
34.
D
36.
D
38.
C
39.
B
40.
B
41.
B
42.
B
43.
D
44.
C
45.
B
46.
47.
B
48.
C
49.
B
50.
C
1
B