Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
√
D. 3 − 4 2.
2
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. √ .
A. 3 .
C. 2 .
2e
e
2 e
Câu 3. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 1.
D.
2
.
e3
D. x = 3.
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
4a3 3
2a3 3
a3
a3
.
B.
.
C.
.
D.
.
A.
6
3
3
3
tan x + m
Câu 5. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 6. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối bát diện đều.
mx − 4
Câu 7. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. Khối 12 mặt đều.
D. 34.
Câu 8. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .
n−1
Câu 9. Tính lim 2
n +2
A. 1.
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
B. 3.
C. 0.
√
Câu 10. Thể tích của khối lập phương có cạnh bằng a 2
√
√
A. V = a3 2.
B. 2a3 2.
C. V = 2a3 .
D.
α
aα
= aβ .
β
a
D. 2.
√
2a3 2
D.
.
3
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 12. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 13. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
Câu 14. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
A. un =
.
B. un =
.
5
3
C. 4.
C. un =
D. 6.
n3 − 3n
.
n+1
D. un = n2 − 4n.
Trang 1/4 Mã đề 1
Câu 15. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B. 2a 6.
C. a 3.
D.
A. a 6.
.
2
Câu 16.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 17. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 18. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
√
√
Câu 19. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 3.
B. 2 3.
C. 3 2.
D. 5.
D. 2 +
√
3.
Câu 20. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 21. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .
D. T = 4 + .
e
e
Câu 22. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 23. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.
D. 72.
Câu 24. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 68.
C.
.
D. 5.
17
Câu 25. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
Câu 26. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
π
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
Câu 28. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Trang 2/4 Mã đề 1
Câu 29. [2] Phương trình log x 4 log2
A. 3.
B. 1.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 2.
D. Vô nghiệm.
Câu 30. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 31. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có vơ số.
√
Câu 32. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
12
4
Câu 33. Hàm số nào sau đây khơng có cực trị
x−2
1
C. y =
A. y = x + .
B. y = x4 − 2x + 1.
.
D. y = x3 − 3x.
x
2x + 1
Câu 34. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2
2
Câu 35. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 36. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.
D. Tứ diện đều.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 38. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
2
4
8
0 0 0
d = 60◦ . Đường chéo
Câu 39. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
2
Câu 40. [3-c]
số f (x) = 2sin x + 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
1 + 2 + ··· + n
Câu 41. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Trang 3/4 Mã đề 1
Câu 42. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
4a3 3
5a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 43. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
Câu 44. Tính lim
A. 0.
B. 3.
C. 1.
2n2 − 1
3n6 + n4
B. 1.
C.
2
.
3
D. 2.
D. 2.
Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
C. 12.
D. 10.
Câu 46. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
Câu 47. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
B. P = 2.
C. P =
.
D. P = 2i.
A. P =
2
2
√
Câu 48. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. .
D. −3.
A. 3.
B. − .
3
3
Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
x+2
Câu 50. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 2.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
C
3.
C
4.
B
5.
C
6.
B
7.
9.
11.
8.
D
10.
C
D
B
12.
B
13.
D
14.
D
B
16.
15. A
17.
C
18.
19.
C
20.
D
B
D
21. A
22.
C
23. A
24.
C
25.
D
27.
29.
26.
B
28.
C
B
30.
31. A
D
B
32. A
33.
C
34. A
35.
B
36.
C
37.
B
38.
C
40.
C
39.
41.
D
42.
B
43.
D
45.
47.
49.
D
44. A
46. A
C
B
C
1
48.
C
50.
C