Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg c6 (912)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.64 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1.√Tìm giá trị lớn nhất của hàm số y =
A. 2 3.
B. 3.




x + 3 + 6 − x√
C. 2 + 3.


D. 3 2.

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
Z 3
x
a
Câu 3. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và



d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.

D. 1.
a
là phân số tối giản. Giá trị
d
D. P = 4.

Câu 4. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 5. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .

A. 50 50 .
4
4
4
4
Câu 6. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
.
B. y0 =
.
C. y0 = .
D. y0 =
.
A.
10 ln x
x
x
x ln 10
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng cách từ A đến cạnh S√C là a. Thể tích khối chóp√S .ABCD là


a3 2
a3 3
a3 2
3

A. a 3.
B.
.
C.
.
D.
.
4
6
12
x2 − 9
Câu 8. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. +∞.
D. −3.
Câu 9. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b


x→a

x→b

Câu 10. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 3.
C. 2.
D. 5.
2
x
Câu 11. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = 1.
e
e
Câu 12. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
Trang 1/4 Mã đề 1


(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.

A. 0.

B. 2.

C. 1.

D. 3.

Câu 13.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 14. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
2
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 14.
D. ln 12.
Câu 16. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.


Câu 17. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là




πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
6
3
Câu 18. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
4a3 3
2a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
3
3
3
2
Câu 19. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 20. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2

3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4

2
2
2

Câu 21. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 22. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC

√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Trang 2/4 Mã đề 1


Câu 23. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. 2.
B. .
C. −2.
2
x−2
Câu 24. Tính lim

x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
3

1
D. − .
2

D. 1.

2

Câu 25. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
A.

3
d = 120◦ .
Câu 27. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C. 2a.
D.
.
2
Câu 28. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
C. 12.
D. 8.
2n − 3
Câu 29. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
1 − xy
Câu 30. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




9 11 − 19
2 11 − 3
9 11 + 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
!
!
!
4x
1
2
2016
Câu 31. [3] Cho hàm số f (x) = x
+f
+ ··· + f
. Tính tổng T = f
4 +2
2017
2017

2017
2016
A. T = 1008.
B. T = 2016.
C. T =
.
D. T = 2017.
2017
1
Câu 32. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
! x3 −3mx2 +m
1
Câu 33. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.

Câu 34. Thể tích của khối lập phương có cạnh bằng a 2 √



2a3 2
A. V = 2a3 .
B. V = a3 2.
C.
.
D. 2a3 2.
3
Câu 35. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 6.
D. 10.
d = 300 .
Câu 36. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2

Trang 3/4 Mã đề 1


Câu 37. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.

D. 2.

Câu 38. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
4x + 1
bằng?
Câu 39. [1] Tính lim
x→−∞ x + 1
A. 2.
B. 4.
C. −1.
D. −4.
3
x −1
Câu 40. Tính lim

x→1 x − 1
A. +∞.
B. −∞.
C. 0.
D. 3.
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
24
16
48
Câu 42. Mệnh đề nào sau đây sai?
Z

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

C. 4.

Câu 45. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. − ; +∞ .
C. −∞; .

2
2
2

D. 8.
!
1
D.
; +∞ .
2

[ = 60◦ , S O
Câu 46. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19

Câu 47. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 48. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6

3
3
3
Trang 4/4 Mã đề 1


Câu 50. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
D. 2a 2.
.
B.
.
C. a 2.
A.
4
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

D

2.

B

3.

D

4.

B
D

6.

C

5.
7.

B

8.

9.


B

10.

11.

B

12.

B

14.

B

13. A
15.

D

20.
B

23.

C
D

18.


19. A
21.

C

16.

C

17.

B

B

22. A
24.

C

D

25.

D

26.

B


27.

D

28.

B

30.

B

29.

C

31. A

32.

33. A

34.

35.

B

37.

39.

B

41. A
45.

D
C

36.
C

38.

D

40.

D

42.

43.

C

B

44.


C
B

46.

C
C

47.

C

48.

49.

C

50.

1

D

B




×