Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c6 (797)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B.
D.
A. 8 3.
.
C. 6 3.
.
3
3
Câu 2. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?


A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 3. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.
D. 0, 8.
1
Câu 4. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 5. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vuông góc với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD
√là
3
3
3
a
a 3
a 3
A.
.
B.

.
C.
.
D. a3 .
3
9
3
Câu 6. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 7. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 8. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 9. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng

√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 10. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
0 0 0
d = 60◦ . Đường chéo
Câu 11. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0

Trang 1/5 Mã đề 1




4a3 6
A.
.
3


a3 6
B.
.
3


2a3 6
D.
.
3


C. a 6.
3

Câu 12. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 6 mặt.

D. 8 mặt.
2

2


sin x
Câu 13.
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất √
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 14. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.

D. m > 0.

Câu 15. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
ln x p 2

1
Câu 16. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
B. .
C. .
D. .
A. .
9
3
9
3
Câu 17. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.

3
2
un
Câu 18. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. −∞.
D. 0.

Câu 19. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vơ số.
!
1
1
1
+ ··· +
Câu 20. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .

2
2
Câu 21.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
12
2
6
Câu 22. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.
log 2x

Câu 23. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x

A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
2x ln 10
x3
cos n + sin n
Câu 24. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.


a3 2
D.
.
4
D. Năm cạnh.

D. y0 =

1 − 2 ln 2x
.
x3 ln 10


D. 0.

Câu 25. Xét hai câu sau
Trang 2/5 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 26. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
24
12
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
3
3
3
8a 3
8a 3
4a 3
a 3

A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 28. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 29. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
C. .
D. 1.
A. 3.
B. .
2
2
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √

tích khối chóp S .ABCD là
4a3 3
2a3 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6

Câu 31. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 32. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 4.
x−3
Câu 33. [1] Tính lim
bằng?

x→3 x + 3
A. 0.
B. −∞.
C. 1.
Câu 34. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. .
2
2
Câu 35. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − .
2e
e
x−1
Câu 36. [1] Tập xác định của hàm số y = 2 là
A. D = R.
B. D = R \ {1}.
C. D = (0; +∞).

D. 2.
D. +∞.
1
D. − .
2

D. −

1
.
e2

D. D = R \ {0}.

Câu 37. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. m = −2.

Câu 38. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.

D. 30.

3

2

C. 8.

Trang 3/5 Mã đề 1



Câu 39. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
A. 2.
B. 1.
C.
2
x+2
Câu 40. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 2.
Câu 41. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

D.

1
.
2

D. 3.

C. 20.

D. 30.


Câu 42. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 3.
B. 2.
C. 1.
D. 7.
x

Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 44. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
.
B. P = 2.
C. P = 2i.
D. P =
.
A. P =
2
2
Câu 45. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 46. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 12.

D. 6.

Câu 47. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.

D. 0.



x=t




Câu 48. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I

thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
2
x − 3x + 3
Câu 49. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
C. x = 3.
D. x = 1.
Câu 50. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.

A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

D

3. A

4.

D

5. A

6.

1.

C


D

7.
9.

8. A

B

12. A

13. A

14.

15.

D

20.

21. A

22. A
D

26.

B


C

28.

29.

C

30. A

31.

C

32. A

33. A
37.

C

24.

D

27. A

35.

D


18.

19. A
23.

B

16. A

C

17.

25.

C

10.
C

11.

C

D

34. A
36. A


B

38.

D

D

39. A

40.

41. A

42.

B

44.

B

43.

D

45. A

C


46.

C

47.

D

48.

B

49.

D

50.

B

1



×