Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c8 (300)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.26 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

Câu 2. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).

D. (0; −2).


Câu 3. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2√+ i|



12 17
.
B. 34.
C. 68.
D. 5.
A.
17
!
1
1
1
Câu 4. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 5. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.

B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a

Câu 6. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

x→a

C. 8.

x→a

D. 30.

Câu 7.√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
3
3
1
.
B. .
C. 1.
D. .
A.
2
2

2
!4x
!2−x
2
3
Câu 8. Tập các số x thỏa mãn


3
2
!
"
!
#
#
"
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
3
3
5
Câu 9. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 10. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
x−3 x−2 x−1
x
Câu 11. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 12. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).

C. (−∞; 0) và (2; +∞). D. (0; +∞).

Câu 13. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
x+2
Câu 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vô số.
D. 3.
Trang 1/4 Mã đề 1


Câu 15. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.

x2 + 3x + 5
Câu 16. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .

B. 1.
C. 0.
D. .
4
4
Câu 17. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
n2
5n − 3n2
5n + n2

(n + 1)2
Câu 18. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
Câu 19. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.

Câu 20. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.


Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
.
A. 40a .
B. 20a .
C. 10a .
D.
3
d = 120◦ .
Câu 22. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 4a.
D. 2a.
A.
2
Câu 23.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3

A.
.
B.
.
C.
.
D. .
4
12
2
4
3
2
Câu 24. Cho hàm số y = x − 2x + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 25. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.

C. Trục ảo.
D. Trục thực.
Câu 26. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Trang 2/4 Mã đề 1


B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 27. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 28. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 13.
D. log2 2020.
Câu 29.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

1

dx = ln |x| + C, C là hằng số.
x

Câu 30. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

B.
Z
D.

xα dx =

xα+1
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

C. 4.

D. 5.

Câu 31. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
D.
.
A. 7.
B. 5.

C. .
2
2
2
Câu 32. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
!
x+1
Câu 33. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 34. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 35. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
 π π
3
Câu 36. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.
tan x + m
nghịch biến trên khoảng
Câu 37. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
mx − 4
Câu 38. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m

A. 26.
B. 67.
C. 34.
D. 45.
Câu 39. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

C. 10 cạnh.

Câu 40. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−1; 1).

D. 11 cạnh.
D. (−∞; 1).

Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
Trang 3/4 Mã đề 1


2n + 1
Câu 42. Tính giới hạn lim
3n + 2

3
1
2
A. .
B. 0.
C. .
D. .
2
2
3
3
2
Câu 43. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 44. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D. m , 0.

Câu 45. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

D. 12.


C. 6.
1
5

Câu 46. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (−∞; 1).
C. D = (1; +∞).
D. D = R \ {1}.
x−2
Câu 47. Tính lim
x→+∞ x + 3
2
D. 1.
A. 2.
B. −3.
C. − .
3
Câu 48. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 49. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n

n

C.

sin n
.
n

1
D. √ .
n

Câu 50. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −4.

C. −2.

D.

67
.
27

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3. A

4.

5.

C

6. A

7.

C

8.

9.

C

10.


11.

C

12.

13.

14.

B

15.

C

16. A

17.

C

18.

19.

B

20.


21.

B

22. A

23. A
25.

24.
B

B
C
D
C
B
B
D
B

26. A

27. A
29.

D

B


28.

C

30.

C
C

31.

C

32.

33.

C

34. A

35.

C

36. A

37.


C

38.

C

39.

C

40.

C

41.

C

42.

D

43.

C

44.

D


45.

C

46.

C

48.

C

50.

C

47.

D

49. A

1



×