Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 3 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 2. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
D. Chỉ có (II) đúng.
Câu 3. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
6
18
x
Câu 4. Tính diện tích hình phẳng giới hạn bởi các đường√y = xe , y = 0, x = 1.
1
3
3
B. .
C.
.
D. 1.
A. .
2
2
2
Câu 5.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).
A.
k f (x)dx = k
f (t)dt = F(t) + C.
x+1
bằng
Câu 6. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .
D. 1.
3
4
Câu 7. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
!4x
!2−x
2
3
Câu 8. Tập các số x thỏa mãn
≤
là
"
!
"3
! 2
#
#
2
2
2
2
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
D. −∞; .
3
5
5
3
Câu 9. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. Cả ba mệnh đề.
D. (II) và (III).
Trang 1/3 Mã đề 1
Câu 10. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
2e
e
tan x + m
Câu 11. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 12.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
f (x)dx −
k f (x)dx = f
B.
Z
Z
g(x)dx.
D.
f (x)g(x)dx =
Z
f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 14. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Câu 15. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Z 1
6
2
3
Câu 16. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.
B. 2.
Câu 17. Giá trị của giới hạn lim
A. 2.
B. 1.
Z
C. 0.
D. −1.
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
B. 0.
Câu 19. Tính lim
x→5
A. −∞.
D. 6.
1
Câu 18. Cho
1
A. .
2
2−n
bằng
n+1
C. −1.
C. 1.
D.
1
.
4
C. +∞.
D.
2
.
5
x2 − 12x + 35
25 − 5x
2
B. − .
5
Câu 20. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
Câu 21. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.
D. Một mặt.
Trang 2/3 Mã đề 1
Câu 22. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 23. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
q
2
Câu 24. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
√
√
4n2 + 1 − n + 2
Câu 25. Tính lim
bằng
2n − 3
3
C. +∞.
D. 1.
A. 2.
B. .
2
Câu 26. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 27. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
√
Câu 29. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
36
6
Câu 30. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 31. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.
D. 13.
[ = 60◦ , S A ⊥ (ABCD).
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
3
√
a
2
a
2
a
3
B.
.
C.
.
D.
.
A. a3 3.
4
12
6
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. e.
Câu 34. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
3
3
3
√
6
15
5
a
a
a
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
Câu 35. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.
Trang 3/3 Mã đề 1
Câu 36. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =
.
A.
10 ln x
x
1
1
C. y0 = .
D. y0 =
.
x
x ln 10
1
Câu 37. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Câu 38. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 39. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3
a3 15
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
25
3
5
25
Câu 40. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/3 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
1. A
4.
D
5.
C
6.
D
C
7. A
8. A
9. A
10.
C
D
12.
11.
B
13.
B
14. A
15. A
16. A
17.
D
18. A
19.
D
20.
22.
D
21.
B
24.
C
23.
D
25.
D
26. A
27.
28. A
29. A
30.
D
31.
32.
B
33.
34.
B
35. A
36.
D
37.
38.
D
39. A
40.
C
1
C
C
C
D
D