Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c3 (124)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.39 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
Câu 3. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 4. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu


không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 5. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n

Câu 6. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.


Câu 7.√Tìm giá trị lớn nhất của hàm

√ số y = x + 3 + 6 − x

A. 2 3.
B. 2 + 3.
C. 3.
D. 3 2.
Câu 8. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
! x3 −3mx2 +m
1
nghịch biến trên khoảng
Câu 9. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
q
2
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 11. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
2
1
A.
.
B.
.
C. .
D. .
10
10
5
5
Trang 1/4 Mã đề 1


Câu 12. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 13. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.


D. Vô nghiệm.

Câu 14. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 4.

D. 1.
Z 1
6
2
3
Câu 15. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. 6.

C. 2.


D. −1.

Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
d = 60◦ . Đường chéo
Câu 17. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6

2a3 6
4a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 18. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 19. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
Câu 20. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.

D. 0.


Câu 21. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


a 3
a3 3
a3 3
a3 2
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 22. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Câu 23. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .

B. −e2 .
C. −2e2 .
D. 2e4 .
2
Câu 24. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.
Trang 2/4 Mã đề 1


Câu 25. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 26. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 27. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728

1079
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 28. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
2a3 6
a3 3
a 6
.
B.
.
C.
.

D.
.
A.
12
2
9
4
Câu 29. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 30. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
!
1
1
1
Câu 31. Tính lim
+

+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
Câu 32. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.
C. .
D. 1.
2
2
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
4a3 3
2a3 3
a3
.
B.
.
C.

.
D.
.
A.
3
6
3
3
Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
d = 30◦ , biết S BC là tam giác đều
Câu 35. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.

D.
.
9
13
16
26
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.

3
4
Câu 37. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 38. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

C. 12.

D. 30.

Trang 3/4 Mã đề 1


Câu 39. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.

C. 6.

D. 10.

Câu 40. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 14 năm.
D. 12 năm.
Câu 41. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.

D. 2.

Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.

C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 43. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2
2
Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 45. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.

A. m =
(1, 01)3 − 1
3
120.(1, 12)3
100.1, 03
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3


4n2 + 1 − n + 2
Câu 46. Tính lim
bằng
2n − 3
3
B. 1.
C. +∞.
D. 2.
A. .
2
Câu 47. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.

D. 11.
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 49. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a

2
Câu 50. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3.


D

4.

C

5.

D

6.

C
B

7.

D

8.

D

9.

D

10.

D

D

11.

B

12.

13.

B

14.
16. A

15. A
17.

B

18.

19.

B

20.

21.
23.


C

24.
D
C

B
D

30.

C

32. A

33.

C

34.

35.

B

36. A

37.


B

38. A

39.
43.

C

28. A

31. A

41.

D

26.

B

29.

C

22.

B

25.

27.

B

40.

C
B

B

B

42.

C

44.

B

45. A

46.

B

47. A

48.


49.

C

D

50.

1

D
C



×