Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 1 (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.43 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 2. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.

C. 8.

D. 30.

Câu 3. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 4. Tính lim
A. 1.


2n2 − 1
3n6 + n4
B. 0.

Câu 5. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 7.

B. 2.

C. 2.

D.

2
.
3

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 4.

Câu 6. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .
D. 64cm3 .

Câu 7. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 1.

D. 0.

Câu 8. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 9. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 10. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.
Trang 1/10 Mã đề 1



x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
Câu 11. [4-1212d] Cho hai hàm số y =

Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 13. Cho

x2
1
A. −3.
B. 0.
C. 3.
D. 1.
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
4a 3
8a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 15. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

mơđun √
z.



5 13
A.
.
B. 26.
C. 2.
D. 2 13.
13
1

Câu 16. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.

D. D = (−∞; 1).

3
2
Câu 17. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.



D. −3 − 4 2.

Câu 18. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.

D. Tứ diện đều.

Câu 19. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
8
Câu 21. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Câu 22. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.

D. 0, 7%.
d = 300 .
Câu 23. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
A. V =
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
2
2
Câu 24. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9

6
15
Trang 2/10 Mã đề 1


Câu 25. Tính lim
x→2
A. 3.

x+2
bằng?
x
B. 0.

C. 2.

D. 1.

Câu 26. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).

Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
C. 2a 6.
B.
D. a 3.
A. a 6.
2
Câu 28. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 29. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 30. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
C. V = S h.
A. V = 3S h.
B. V = S h.
3


1
D. V = S h.
2


Câu 31. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3
a3 3
a3 3
3
.
B. a 3.
.
D.
.
C.
A.
12
3
4
Câu 32. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.


Câu 33. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 = x
.
ln 2
2 . ln x
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

a3
2a3 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
6
3

3
3
Câu 35. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = 1 − ln x.

Câu 36. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Trang 3/10 Mã đề 1


Câu 37. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.

D. 72.

x2 − 5x + 6
x→2
x−2
B. 5.

D. 0.


Câu 38. Tính giới hạn lim
A. 1.

C. −1.

Câu 39. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. log2 2020.
D. 2020.

Câu 41. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

Câu 42. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 43. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2

1 − 2e
.

4 − 2e
π
Câu 44. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


D. T = 2 3.
A. T = 2.
B. T = 4.
C. T = 3 3 + 1.
D. m =

Câu 45. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n

A. lim qn = 1 với |q| > 1.

1
= 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
nk

Câu 46. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.

B. 5.
C. 5.
D. .
5
Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
C. lim

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
5
Câu 48. Tính lim
n+3
A. 0.

B. 2.

C. 3.

D. 4.

B. 3.

C. 1.

D. 2.

Câu 49. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều

rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Trang 4/10 Mã đề 1


Câu 50. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 6
a3 15
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 51. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1

A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 52. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (−∞; −1).
D. (1; +∞).
1
Câu 53. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

4x + 1
Câu 55. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.

Câu 54. Hàm số y =
A. x = 1.

C. x = 2.

D. x = 3.

C. −1.

D. 2.

Câu 56. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 6.
D. 8.
1
Câu 57. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 58. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 59. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
6
A. un =
.
B. un =
.
n+1
5

!n
−2
C. un =
.
3

D. un = n2 − 4n.

Câu 60. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2

A.
.
B. a 3.
C. a 2.
D.
.
3
2
Câu 61. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 62. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
B. 5.
C.
.
D. 68.
17
3
x −1
Câu 63. Tính lim
x→1 x − 1

A. −∞.
B. 3.
C. 0.
D. +∞.
Câu 64. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Trang 5/10 Mã đề 1






a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
2
4
Câu 65. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .

B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
[
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60◦ , S A ⊥ (ABCD).
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là


a3 2
a3 2
a3 3
3
.
B.
.
C. a 3.
D.
.
A.
6
12
4
Câu 67. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

C. 8.
D. 20.
Câu 68. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).

D. (−∞; 1).

Câu 69. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

Câu 70. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. y =
C. 12.

x−2
.
2x + 1

1
D. y = x + .
x
D. 8.


Câu 71. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 72.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 73. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 74. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 75. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 6.
D. V = 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 76. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.

12
24
24
2
Câu 77. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √

A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
0 0 0 0
0
Câu 78.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7

2
3

Trang 6/10 Mã đề 1



Câu 79. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
18
36
6

!
1
1
1
Câu 80. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 0.
D. 2.
A. 1.
B. .
2
Câu 81. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 2.
C. 3.

.
D.
3
Câu 82. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 83. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
n+1
1
A. √ .
C.
.
D.
.
B. .
n
n
n
n
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 84. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 34.

D. 45.
!2x−1
!2−x
3
3
Câu 85. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).
D. [3; +∞).
Câu 86. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
x−3
Câu 87. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. 0.
D. +∞.

3

Câu 88. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .

D. e.

Câu 89. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D.
1
Câu 90. [1] Giá trị của biểu thức log √3
bằng
10
1
A. 3.
B. −3.
C. − .
D.
3
!4x
!2−x
2
3
Câu 91. Tập các số x thỏa mãn



#
" 3 ! 2
#
2
2
2
B.
D.
A. −∞; .
; +∞ .
C. −∞; .
5
5
3

ln 4.

1
.
3

"

!
2
− ; +∞ .
3

Câu 92.

√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Trang 7/10 Mã đề 1


Câu 93. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.

D. {3; 4}.

Câu 94. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 95. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 96. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là

A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 97. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
x2
Câu 98. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = e, m = .
D. M = , m = 0.
e
e
Câu 99. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 100. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.

Z 1
Câu 101. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 0.
D. .
4
2
0
Câu 102. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
√3
Câu 103. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 104. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
A. 1.

B.

Câu 105. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.
!
x+1
Câu 106. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
4035
2016
A.
.
B. 2017.
C.
.
2017
2018
Câu 107. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

A. − .
B. −e.
C. − .
e
2e

D. {3; 3}.
f 0 (2) + · · · + f 0 (2017)
D.

2017
.
2018

D. −

1
.
e2
Trang 8/10 Mã đề 1


Câu 108. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.
x+2

Câu 109. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 110. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 111. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)

Câu 112. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




a 38
3a
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
1
Câu 113. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 114. [3-12217d] Cho hàm số y = ln
x+1
0
y

0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 115. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 116.
Các khẳng định nào Z
sau đây là sai?
Z
f (x)dx = F(x) + C ⇒
!0
Z
C.
f (x)dx = f (x).
A.

f (t)dt = F(t) + C. B.

Z

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 117. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
8
4
Câu 118. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.

D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 119.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
6


a3 2
C.
.
4


a3 2
D.
.
2
Trang 9/10 Mã đề 1


Câu 120. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là

A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. (2; 2).

Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 2
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
48
16
24
1

Câu 122. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Câu 123. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.
C. +∞.
D. 2.
2
1−n
Câu 124. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
3
2
Câu 125. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9

13
5
23
.
B.
.
C.
.
D. − .
A. −
100
25
100
16
Câu 126. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
a 3
2a3 3
5a3 3
4a3 3
.
B.
.
C.
.
D.

.
A.
3
2
3
3
Câu 127. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 4.
D. 0, 2.
x2 − 9
Câu 128. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. +∞.
D. 3.
2
x − 12x + 35
Câu 129. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. − .
C. −∞.
D. .

5
5
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

D

2.

B

3.

D

4.

B

5. A

6. A

7.

B

9.

B

8.
10. A


11.

D

12.

13. A

14.

15. A

16.

17.

C

C
D

31.

C

33.

C


35.

36. A
B

41.
D

B
C

45. A

46. A

47.

48. A

49. A
B
B
C

60.

D

64. A
D


B

55.

B

57.

B

59.

C

61.

C

1

B

65.

D

67.

D


69.

C

D

53.

63.

C

66.

C

51.

C

54. A

68.

D

43.

B


50.

C

39.

C

42.

62.

B

37.

38.

58.

C

27. A

B

34.

56.


D

29. A

32.

52.

C

25.

28. A

44.

B

22.

B

26.

40.

C

20. A


23. A

30.

D

18.

C

19. A
21.

C

C


C

70.
72.
75.

D
B

71.


D

74.

D
C

76.

D

78.

77. A
79.

B

80. A

81.

B

82.

C

84.


C

83.

D

85.

C

86. A

87.

C

88.

89. A

90.
D

91.
93.

B

D


94. A
96.
98.

B

99. A
D

101.
103.

C

92.

95. A
97.

B

B

D
B

100.

D


102.

D
C

104.
D

105.
107.

C

108.

109.

C

110.

111.

D

106.

D

C

D

112. A

113.

C

114.

115.

C

116.

B

117.

C

118.

B

119. A
121.
123.


120. A
D

122.

B
D

124. A

125. A

126.

127. A

128. A

129.

C

D

130.

2

B
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×