Tải bản đầy đủ (.pdf) (13 trang)

Bài tập toán thpt 1 (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.37 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 2. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 1.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.

Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −5.


D. −9.
Câu 4. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
12
36
6
2x + 1
Câu 5. Tính giới hạn lim

x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 6. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình chóp.
D. Hình lăng trụ.
Câu 7. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
4
2
1
Câu 8. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 9. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 10. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
2
1−n
Câu 11. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
3
2
2

Trang 1/10 Mã đề 1






Câu 12. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

2a3 3
a3
4a3 3
a3
.
B.
.
C.

.
D.
.
A.
6
3
3
3
5
Câu 14. Tính lim
n+3
A. 2.
B. 0.
C. 1.
D. 3.
2

2

Câu 15. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 16. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.


C. 30.

D. 12.

Câu 17. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
.
D. 68.
B. 5.
C.
17
Câu 18. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 19. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.

B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 20. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B.
.
C.
.
D. 6 3.
A. 8 3.
3
3


Câu 21. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 22. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. 2.
D. .

2
2
un
Câu 23. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 24. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
1
C. lim k = 0.
D. lim = 0.
n
n
2
Câu 25. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
Trang 2/10 Mã đề 1


Câu 26. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4

2
x
Câu 27. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
Câu 28. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 29. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
C. m ≤ 0.
D. − < m < 0.
A. m ≥ 0.
B. m > − .
4
4
Câu 30. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 31. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2

Câu 32. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 33. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
Câu 34. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.

C. f 0 (0) = ln 10.

Câu 35. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.

D. f 0 (0) =

1
.
ln 10


D. −4.

x3 −3x+3

Câu 36. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
2
A. e .
B. e .
C. e.

D. e3 .

Câu 37. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
x3 − 1
Câu 38. Tính lim
x→1 x − 1
A. −∞.
B. 3.

C. 0.

D. +∞.


Câu 39. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 3/10 Mã đề 1


Câu 40. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).

C. (−∞; 2).

D. (0; 2).

Câu 41. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành

A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 42. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
C.
;3 .
D. (1; 2).
A. [3; 4).
B. 2; .
2
2
!4x
!2−x
2
3
Câu 43. Tập các số x thỏa mãn


3
2
"
!
"

!
#
#
2
2
2
2
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
D. −∞; .
3
5
3
5
Câu 44. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.

A.
2
6
3
1
Câu 45. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. 2.
D. −1.
Câu 46. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 27.
B. 3 3.
C. 9.
D. 8.


Câu 47.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
!
1
1

1
+ ··· +
Câu 48. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 49. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
12
24
Z 1

6
2
3
Câu 50. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 2.

Câu 51. [1] Tập xác định của hàm số y = 2
A. D = R \ {1}.
B. D = R.

x−1

C. 6.

D. 4.

C. D = R \ {0}.

D. D = (0; +∞).



Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể

tích khối √
chóp S .ABMN là



3
5a 3
a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Trang 4/10 Mã đề 1


[ = 60◦ , S A ⊥ (ABCD).
Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a3 2
a 3
a 2
3
D.
A.
.
B.
.
C. a 3.
.
6
4
12
1
Câu 54. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.
C. − .
D. −3.
3
3
Câu 55. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là

A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 56. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).

2
Câu 57.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
A. 6 2.
B. 7.
C. −7.

D. (1; −3).

D. −6 2.

Câu 58. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; −8).
D. A(4; 8).
Câu 59. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.

A. 0.

B. 2.

C. 3.

Câu 60. Thể tích của khối lập phương có cạnh bằng a 2


B. 2a3 2.
C. V = 2a3 .
A. V = a3 2.

D. 1.

2a3 2
D.
.
3

Câu 61. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 62.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.

B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
1 − 2n
bằng?
3n + 1
2
1
2
A. 1.
B. .
C. .
D. − .
3
3
3
3
2
Câu 64. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng

(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 63. [1] Tính lim

Câu 65. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 66. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −2.
D. −7.
A.
27
Trang 5/10 Mã đề 1


Câu 67. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.

D. 8, 16, 32.
Câu 68. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 4.

D. 3.

Câu 69. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
3
10a
.
D. 10a3 .
A. 40a3 .
B. 20a3 .
C.
3
Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Năm cạnh.

D. Ba cạnh.
1
Câu 71. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 72. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.

Câu 73. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 74.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3

1
3
A.
.
B. 1.
C. .
D. .
2
2
2
Câu 75. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
x

Câu 76. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 1.
D. 0.
Câu 77. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 5

a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
25
5
Trang 6/10 Mã đề 1


Câu 78. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 6.
D. V = 5.
Câu 79. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
A.

.
B.
.
C. −
.
D. − .
100
25
100
16
Câu 80. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 6.
D. 12.
Câu 81. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 3.
B. 2.
C. 1.

D.
.
3
Câu 82. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
x2 − 5x + 6
Câu 83. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.

C. 0.

D. 5.

d = 300 .
Câu 84. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

a 3
3a3 3
3

3
.
B. V = 3a 3.
.
A. V =
C. V = 6a .
D. V =
2
2
log 2x
Câu 85. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3

Câu 86. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 87. Cho I =

d
d

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
2
x − 3x + 3
Câu 88. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.
C. x = 1.
D. x = 0.
2n + 1
Câu 89. Tính giới hạn lim
3n + 2
1
3
2
A. .
B. .
C. 0.
D. .
2
2
3
Câu 90. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!

!
1
1
1
1
A.
; +∞ .
B. −∞; − .
C. − ; +∞ .
D. −∞; .
2
2
2
2
Trang 7/10 Mã đề 1


Câu 91. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 15, 36.
D. 20.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3
3


3
a
3
a
3
2a
.
C.
.
D.
.
A. a3 3.
B.
3
3
6
Câu 93. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
Câu 94. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =

.
C. m =
.
4 − 2e
4 − 2e
4e + 2

D. m =

1 + 2e
.
4e + 2

Câu 95.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
Z x
Z
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 96. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

A. aα bα = (ab)α .
B. β = a β .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
a
log2 240 log2 15
Câu 97. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.
D. 1.
Câu 98. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 99. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2

a3 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
Câu 100. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 101. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
Câu 102. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
2
B. − .
5

C. 12.


D. 20.

C. +∞.

D.

Câu 103. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.

2
.
5

D. 3.

Câu 104. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
Trang 8/10 Mã đề 1


Câu 105. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.

Câu 106. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 107. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 108. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

Câu 109. [12212d] Số nghiệm của phương trình 2 .3 − 2.2
A. 3.
B. 1.
C. 2.
x−3

x−2

D. {5; 3}.
x−3


− 3.3

x−2

+ 6 = 0 là
D. Vơ nghiệm.

Câu 110. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng S B và AD bằng


a 2
a 2
.
B. a 2.
.
D. a 3.
C.
A.
3
2
Câu 111.
!n Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
5
4

5
1
.
B. − .
C.
.
D.
.
A.
3
3
3
e
Câu 112. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n

C.

1
.
n

1

D. √ .
n

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. −1.
C. .
D. 1.
2

Câu 114. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 115. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
a

3
a
3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
Câu 116. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 113. [2-c] Cho hàm số f (x) =

Câu 117. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.

.
B.
.
C.
.
D.
.
12
4
8
4
2

2

sin x
Câu 118. [3-c] Giá trị nhỏ nhất và giá
+ 2cos x√lần lượt là
√ trị lớn nhất của hàm√số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.

Trang 9/10 Mã đề 1


Câu 119. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Z 1
Câu 120. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B.


1
.
4

C. 0.

D. 1.

Câu 121. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

C. 3.


π

D. +∞.

Câu 122. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π
2 π4
3 π6

A.
e .
B.
e .
C. 1.
D. e 3 .
2
2
2
Câu 123. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 124. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

Câu 125. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. (I) và (II).


D. Cả ba mệnh đề.

C. 6.

D. 8.

Câu 126. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = +∞.

D. lim f (x) = f (a).
x→a

Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.


B. Câu (II) sai.

C. Câu (III) sai.

D. Khơng có câu nào
sai.
[ = 60◦ , S O
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Trang 10/10 Mã đề 1


Câu 129. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá

trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 130. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

2. A

B


5. A
7.

D

9.
11.

C

4.

B

6.

B

8.

B

10. A
D

12.

B

13.


D

14.

15.

D

16.

D

B

17.

C

18.

D

19.

C

20.

D


21.

B

C

22.

23.

C

24. A

25.

C

26.

B

27.

B

28.

29.


B

30.

D

32.

D

31. A
33.

D

34.

35. A

36. A

37. A

38.

39.

D


40. A

41.

D

42.

43. A
45.

B

47. A

C
B
C

44.

B

46.

B

48.

49.

B

52.

53.

B

54.

55.

C

50.

C

51.

D

D
B
C

56. A
58.

57. A

59.

C

B

60.

61. A

D
B

62. A

63.

D

64.

65.

C

66.

67.

C


68.
1

D
C
D


69.

70.

B

71. A

72. A
D

73.

74.

75.

C

76.


77.

C

78.

79.

C

80.

81.

D

B

B
D
B
D

82. A
84.

83. A

86. A


C

85.

D

87.

D

88.

C

89.

D

90.

C

92.

C

94.

C


91.

C

93. A
D

95.

96.

B

97.

B

98.

C

99.

B

100.

C

101.

103.

102.

C
B

D

104. A

105. A

106.

B

107. A

108.

B

109.

C

110.

111. A


112.

113.

D

114.

115.

D

116. A

117.
119.

C

118.

B

B
D
C

120. A


121. A
124.

C

122. A
C

125.

D
D

126.

D

127.

128.

D

129.

130. A

2

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×