Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
D. 1.
Câu 2. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
5
a
15
a3 6
a
.
B. a3 6.
.
D.
.
A.
C.
3
3
3
Câu 3. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 4. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 5. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.
4x + 1
bằng?
Câu 6. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −4.
C. 3.
D. 2.
C. −1.
D. 2.
Câu 7. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
.
B. √
.
C. √
.
D. 2
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 8. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m < 0.
D. m = 0.
0
0
0
0
Câu 9. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 10. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
3
Câu 11. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e5 .
D. e3 .
Câu 12. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aα+β = aα .aβ .
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
a
Câu 13. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Trang 1/10 Mã đề 1
Câu 14. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
6
2
3
Câu 15. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
Câu 16. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.
D. 20.
Câu 17. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
D. 2e + 1.
e
Câu 18. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
Câu 19. Giá trị lớn nhất của hàm số y =
A. −5.
B. 0.
D. Chỉ có (II) đúng.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 1.
D. −2.
Câu 20. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R \ {1}.
D. D = R.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
√3
4
Câu 22. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
B. a 3 .
C. a 3 .
D. a 3 .
A. a 8 .
Câu 21. [3-1132d] Cho dãy số (un ) với un =
Câu 23. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Hai mặt.
D. Bốn mặt.
Câu 24. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 25. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 26. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 2/10 Mã đề 1
Câu 27. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
d = 120◦ .
Câu 28. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 3a.
D. 2a.
A.
2
x+1
Câu 29. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. .
C. 3.
D. 1.
A. .
3
4
Câu 30.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k
A.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Câu 31. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1
!n
6
C. un =
.
5
!n
−2
D. un =
.
3
Câu 32. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
x2 − 3x + 3
đạt cực đại tại
Câu 33. Hàm số y =
x−2
A. x = 0.
B. x = 2.
C. x = 3.
D. x = 1.
Câu 34. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
Câu 35.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3
!n
4
C.
.
e
Câu 36. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
!n
5
D. − .
3
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
Câu 37. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
e
2e
Câu 38. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD là
√
√
3
3
a 3
a
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
2
Trang 3/10 Mã đề 1
Câu 39. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 40. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.
B. log2 a =
loga 2
log2 a
Câu 41.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
4
12
2
6
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
Câu 43. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Câu 44. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
a3 3
5a3 3
2a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 45. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
Câu 46. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
√
Câu 47. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 4.
D. R.
D. 6.
Câu 48. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
Câu 49. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 50. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
Trang 4/10 Mã đề 1
Câu 51. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 52. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
C. 12.
D. 8.
Câu 53. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
Câu 54. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B. .
C. 5.
D.
.
2
2
Câu 55. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
6
36
Câu 56. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 57. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
3
x −1
Câu 58. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là
√
√
√
2a3 3
a3 3
a3 3
3
.
B. a 3.
C.
.
D.
.
A.
3
3
6
Câu 60. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 61. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 62. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 63. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3
a3 15
.
B.
.
C.
.
D.
.
A.
5
25
25
3
1
Câu 64. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Trang 5/10 Mã đề 1
Câu 65. Tính lim
x→2
A. 0.
x+2
bằng?
x
B. 2.
C. 1.
D. 3.
Câu 66. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
2a 3
a 3
a 3
.
B. a 3.
.
D.
.
A.
C.
3
2
2
Câu 67. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 5.
D. 6.
Câu 68. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.
B. −7.
√
Câu 69. Tính lim
A.
3
.
2
67
.
27
C. −4.
D.
C. +∞.
D. 2.
C. 11 cạnh.
D. 9 cạnh.
√
4n2 + 1 − n + 2
bằng
2n − 3
B. 1.
Câu 70. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
2
Câu 71. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. √ .
B. 2 .
C. 3 .
e
e
2 e
D.
1
.
2e3
√
Câu 72. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
3
12
4
π
Câu 73. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
x2
trên đoạn [−1; 1]. Khi đó
ex
C. M = e, m = 1.
D. M = e, m = 0.
Câu 74. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
1
B. M = e, m = .
e
log2 240 log2 15
Câu 75. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. 1.
1
A. M = , m = 0.
e
D. −8.
2
Câu 76. [3] Biết rằng giá trị lớn nhất của hàm số y =
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 77. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = 1 − ln x.
Câu 78. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vô số.
Trang 6/10 Mã đề 1
Câu 79. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. [3; 4).
C. (1; 2).
D.
;3 .
2
2
√
ab.
Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
tan x + m
Câu 81. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 82. Tính lim
2n2 − 1
3n6 + n4
2
.
D. 1.
3
Câu 83. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a
4a 3
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 84. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
8a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
A. 0.
B. 2.
C.
Câu 85. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 86. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 87. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 1.
D. 3.
Câu 88. Biểu thức nào sau đây khơng có nghĩa
√
√
−3
A. 0−1 .
B. (−1)−1 .
C. (− 2)0 .
D.
−1.
Z 3
x
a
a
Câu 89. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 4.
D. P = 16.
Câu 90. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 2.
B.
.
C. 1.
2
D.
1
.
2
Câu 91. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
n−1
Câu 92. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.
Trang 7/10 Mã đề 1
Câu 93. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
Câu 94. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
n2
C. 5.
C. un =
D. 2.
n2 + n + 1
.
(n + 1)2
D. un =
n2 − 2
.
5n − 3n2
9x
Câu 95. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. .
C. −1.
D. 2.
2
Câu 96. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 97. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
.
C.
.
D. 6 3.
B.
A. 8 3.
3
3
√
Câu 98. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
B. 7.
C. −7.
D. 6 2.
A. −6 2.
Câu 99. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
3
2
Câu 101. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 − 4 2.
C. 3 − 4 2.
A. 3 + 4 2.
√
D. −3 + 4 2.
√
Câu 102. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
x−3
Câu 103. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 104. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 8.
√
√
Câu 105.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
A. 2 3.
B. 3 2.
C. 3.
Câu 106. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.
D. 10.
D. 2 +
√
3.
D. m = 0.
Câu 107. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
log(mx)
Câu 109. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 110. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
C. +∞.
D. −3.
2
Câu 111. Tính lim
x→3
A. 3.
x −9
x−3
B. 6.
Câu 112. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 113. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 9.
D. .
A. 6.
B. .
2
2
3
2
x
Câu 114. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 115. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. Cả ba mệnh đề.
C. (II) và (III).
Câu 116. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
Câu 117. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
1
3|x−2|
D. (I) và (III).
= m − 2 có nghiệm
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 118. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
√
Câu 119. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Trang 9/10 Mã đề 1
Câu 120. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 121. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
2x + 1
Câu 122. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 123. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
D. lim un = c (un = c là hằng số).
C. lim = 0.
n
d = 30◦ , biết S BC là tam giác đều
Câu 124. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
13
16
Câu 125. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 126. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 27 m.
D. 25 m.
2
1−n
Câu 127. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
3
2
2
Câu 128. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
0 0 0 0
Câu 129.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
3
2
7
2
Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3. A
4.
5.
D
B
6. A
7.
C
8.
9.
C
10.
C
11.
C
12.
C
13. A
14. A
D
15.
16.
17. A
18.
19.
B
20.
21.
B
22.
23.
D
24.
25.
B
26.
27.
B
28. A
29.
B
30. A
31.
D
32.
33.
D
34.
35.
B
B
B
D
C
B
C
C
B
36.
D
37.
39.
C
C
C
38.
B
40.
B
41.
B
42.
B
43.
B
44.
B
45.
B
46.
47.
C
49.
B
B
50.
D
51.
52.
D
53. A
54.
B
56.
55.
D
C
B
57. A
58. A
59. A
60.
D
61.
C
62.
B
63.
B
64.
B
65.
B
66. A
67.
68. A
69.
1
D
B
70. A
72.
71.
B
D
74.
76. A
80.
D
75.
D
B
79.
C
B
81.
82. A
D
B
83. A
84.
86.
73.
77.
78.
B
D
85. A
B
87.
B
88. A
89.
90. A
91.
B
93.
B
C
92.
94. A
C
95. A
96.
97.
C
D
98.
C
99.
D
101.
C
100.
D
102.
B
103.
B
104.
B
105.
B
106.
B
107.
B
108.
D
110.
109.
C
111.
B
B
112.
B
113.
114.
B
115. A
116.
117.
C
118.
B
119. A
120.
B
121.
122.
D
C
B
123. A
124.
C
125. A
126.
C
127.
128. A
130.
C
129. A
C
2
B