Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 1 (344)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.06 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. − .
B. 2.
C. .
2
2

D. −2.

Câu 2. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 = x
.
ln 2
2 . ln x


1
Câu 3. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 4. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
5. Thể tích khối chóp S .ABCD là
AD, biết S√H ⊥ (ABCD), S A = a √
4a3 3
2a3 3
4a3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 5. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.

C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 6. Tính lim
x→2

A. 1.

x+2
bằng?
x
B. 2.

C. 0.

Câu 7. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

D. 3.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 8. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vơ số.
D. 2.
Câu 9. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?

x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 10. Cho f (x) = sin x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
2

D. 1 + 2 sin 2x.

Câu 11. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].

C. [−3; 1].
D. [1; +∞).
Câu 12. Hàm số y = x +
A. −1.

1
có giá trị cực đại là
x
B. −2.

C. 2.

Câu 13. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (−∞; 1).

D. 1.
D. (0; 2).
Trang 1/10 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


18 11 − 29
9 11 + 19
C. Pmin =

. D. Pmin =
.
21
9

Câu 14. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 − 19
A. Pmin =
.
9

B. Pmin


2 11 − 3
=
.
3

Câu 15. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 16. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4 − 2e
4e + 2
4e + 2
Câu 17. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

Câu 18. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3


Câu 20.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+

3
+
6√− x


A. 2 3.
B. 2 + 3.
C. 3 2.
D. 3.

Câu 21. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
3a
a 38
.
B.
.
C.
.
D.
.
A.
29
29

29
29
3

Câu 22. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

D. e5 .

Câu 23. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.




Câu 24. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

4
4


4n2 + 1 − n + 2
Câu 25. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
Câu 26. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
2

2

Trang 2/10 Mã đề 1


Câu 27. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3

A. .
B. 1.
C. .
D.
.
2
2
2
tan x + m
nghịch biến trên khoảng
Câu 28. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
2−n
Câu 29. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. 2.
D. −1.
Câu 30. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3

A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 31. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 2.
C. 10.
D. 2.
Câu 32. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 33. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.

D. Tăng lên (n − 1) lần.

Câu 34. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
3
6
1
Câu 35. [1] Giá trị của biểu thức log √3
bằng
10
1
1

A. .
B. 3.
C. −3.
D. − .
3
3
Câu 36. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 37. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
x−1
Câu 38. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Câu 39. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều. D. Khối 12 mặt đều.
x−2 x−1
x
x+1
Câu 40. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
Trang 3/10 Mã đề 1


A. (−∞; −3).

B. [−3; +∞).

C. (−3; +∞).

D. (−∞; −3].

Câu 41. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
A.
.
B. 2a 6.
C. a 3.
D. a 6.
2
Câu 42. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. 2.
2
x
Câu 43. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = 1.
A. M = e, m = .
e
e
Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.

Câu 45. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 7 năm.
D. 8 năm.
2n − 3
bằng
Câu 46. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 47. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 48.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.

B.
.
C. .
D.
.
12
2
4
4
Câu 49. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 12.
C. 18.
D.
2
Câu 50. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.

.
c+2
c+2
c+1
c+3
Câu 51. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 12 cạnh.
D. 10 cạnh.
Câu 52. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 53. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 54. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 55. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
A. − 2 .
B. − .
C. − .
e
2e
e

D. −e.
Trang 4/10 Mã đề 1


Câu 56. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.

6
12
24
Câu 58. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
d = 120◦ .
Câu 59. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 4a.
A. 3a.
B.
2
Câu 60. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 12.
D. 30.
Câu 61. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C. 10.


D. 8.

Câu 62. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 63. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

2

Câu 64. Tính lim

2n − 1
3n6 + n4


2
.
D. 2.
3
Câu 65. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
.
D.
.
A. a 2.
B. 2a 2.
C.
4
2
Câu 66. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
A. 0.


B. 1.

C.

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
log7 16
Câu 67. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. −2.

D. Cả hai câu trên sai.

D. 4.
Trang 5/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0

y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 68. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 69. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x

2
B. − .
5

C.

2
.
5

D. +∞.

Câu 70. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.

C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 71. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.
2n + 1
Câu 72. Tính giới hạn lim
3n + 2
2
A. .
B. 0.
3
Câu 73. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A.
10 ln x
x

C. 20.

C.

số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

3

.
2

C. y0 =

Câu 74. [3] Biết rằng giá trị lớn nhất của hàm số y =

D. 8.

D.
ln 10
.
x

1
.
2

D. y0 =

1
.
x ln 10

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e


C. S = 24.

Câu 75. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.

D. S = 135.
D. Hình tam giác.

d = 300 .
Câu 76. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3

a3 3
3a 3
3
3
.
C. V = 3a 3.
D. V =
.
A. V = 6a .
B. V =
2
2

4x + 1
Câu 77. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −4.
C. −1.
D. 4.
Câu 78. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 79. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.

D. Ba mặt.

Câu 80. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
A.
.
B. .
C. a.
D. .

2
2
3
Trang 6/10 Mã đề 1


x+3
Câu 81. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 82. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2

C. un =

Câu 83. Phát biểu nào sau đây là sai?
1

A. lim √ = 0.
n
n
C. lim q = 1 với |q| > 1.

B. lim

n2 + n + 1
.
(n + 1)2

n2 − 2
.
5n − 3n2

D. un =

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

2

Câu 84. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
1
D. 3 .

A. 3 .
B. 2 .
C. √ .
2e
e
e
2 e
Z 1
Câu 85. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
4
Câu 86.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
.
B.
.
A.
3
3
A. 0.

B.


C.

1
.
2

D. 1.

!n
5
C. − .
3

!n
4
D.
.
e

Câu 87. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R \ {0}.

Câu 88. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.


C. 10.

D. 8.

Câu 89. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 8.

D. 20.

Câu 90. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 91. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.

D. Không tồn tại.

Câu 92. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.


D. {3; 4}.

C. {5; 3}.

[ = 60◦ , S O
Câu 93. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng

2a 57
a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
17
19
19
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
4a3 3
a3
2a3 3
a3
A.

.
B.
.
C.
.
D.
.
3
6
3
3
d = 30◦ , biết S BC là tam giác đều
Câu 95. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9

13
16
26
Trang 7/10 Mã đề 1


Câu 96. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 8 3.
A.
D. 6 3.
3
3
log2 240 log2 15
Câu 97. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.

C. −8.
D. 3.
Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 99. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα bα = (ab)α .

B. aαβ = (aα )β .

C. aα+β = aα .aβ .

D.

α

= aβ .
β
a

1
Câu 100. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.

D. 0 < m ≤ 1.
Câu 101. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
B.
A. a 3.
.
C.
.
D.
.
3
2
2
Câu 102. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.
D. Nhị thập diện đều.
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √

3
3


a
2a
a3 3
3
3
.
B. a3 3.
C.
.
D.
.
A.
3
6
3
Câu 104. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu

f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 105. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 106. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 5.
D. V = 3.
!
3n + 2
2
Câu 107. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.

Câu 108. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 2, 4, 8.
Trang 8/10 Mã đề 1


Câu 109. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
Câu 110. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
log 2x
Câu 111. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =

.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 112. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 113. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. −2.

D. 2.

Câu 114. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.

Câu 115. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 116. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = (−2; 1).
D. D = R \ {1; 2}.
1 − 2n
bằng?
Câu 117. [1] Tính lim
3n + 1
2
2
1
C. .
D. − .
A. 1.
B. .
3
3
3
2x + 1
Câu 118. Tính giới hạn lim
x→+∞ x + 1

1
B. 2.
C. 1.
D. −1.
A. .
2
Câu 119. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
2

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.

Câu 120. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 5}.
Z 2
ln(x + 1)
Câu 121. Cho

dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. −3.
D. 1.
Trang 9/10 Mã đề 1


Câu 122. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.

A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 124. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C. 1.
D.
.
2
2
1
Câu 125. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
Câu 126. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.


Câu 127. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 128. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 129. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e.
C. 2e + 1.
D. 3.
A. .
e
Câu 130.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 1.
C. 5.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D
B
D

5.

2.

C

4.

C

6.

B
D

7. A


8.

9. A

10.

B

12.

B
B

11.

C

13.

D

14.

15.

D

16.

17.


B

18. A
C

19.

22.

23. A

24.

27.

C

26.

B
D
C

35.

D
B

32.


C

34.

C
D

38.

C

40.

41.

D
B

44. A
46.

47. A

48.

49.

D


42. A

45. A
C

51.

D

B
D

50.

B

52.

B

54.

53. A
55.

B

56.

57.


B

58. A

59.

B

60.

61.

D

63.

D
C
B

62.

C

64. A

C

65.

67.

B

36.

39. A
43.

C

30. A

31. A

37.

D

28. A

29.
33.

C

20.

21. A
25.


C

D

66.

B

68. A
1

B


69.

C

70. A

71.

C

72. A

73.

D


74. A

75.

D

76.

77.

D

78.

79. A

B
D
C

80.

81.

C

82.

B


83.

C

84.

B

85.

C

86. A

87. A
89.

88. A
B

92. A

93.

94. A

95.

96.


D

97.

98.

D

99.

100. A

101.

102. A

103. A

104.

109.

C
B

112. A
114.

D

B

120.

D
B
D
B

111.

C

113.

C

D

117.

D

119.

D

121.

B


C

124. A

125. A

126.

127. A

128. A

129.

C

115. A

116. A

123.

B

107. A

108.

118.


D

105.

B

106. A
110.

C

91.

D

130.

2

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×