Tải bản đầy đủ (.pdf) (61 trang)

ứng dụng tối ưu hóa toán học giải bài toán markowitz tối ưu hóa danh mục đầu tư chứng khoán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (708.84 KB, 61 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
KHOA TOÁN - CƠ - TIN HỌC
Trần Thị Như Hoa
ỨNG DỤNG TỐI ƯU HÓA T OÁN HỌC
GIẢI BÀI TOÁN MARKOWITZ
TỐI ƯU HÓA DANH MỤC ĐẦU TƯ CHỨNG KHOÁN
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC CHÍNH QUY
Ngành: Toán - Tin ứng dụng
Người hướng dẫn: PGS.TS Nguyễn Hữu Điển
Hà Nội - 2010
LỜI CẢM ƠN
Trước khi trình bày nội dung chính của khóa luận, em xin bày tỏ lòng biết
ơn sâu sắc tới PGS.TS Nguyễn H ữu Điển người đã tận tình hướng dẫn để em
có thể hoàn thành khóa luận này.
Em cũng xin bày tỏ lòng biết ơn chân thành tới toàn thể các thầy cô giáo
trong khoa Toán - Cơ - Tin học, Đ ại học Khoa Học Tự Nhiên, Đại Học Quốc
Gia Hà Nội đã dạy bảo em tận tình trong suốt quá trình học tập tại khoa.
Nhân dịp này em cũng xin được gửi lời cảm ơn chân thành tới gia đình, bạn
bè đã luôn bên em, cổ vũ, động viên, giúp đỡ em trong suốt quá tr ình học tập
và thực hiện khóa luận tốt nghiệp.
Hà Nội, ngày 19 tháng 05 năm 2010
Sinh viên
Trần Thị Như Hoa
Mục lục
Lời mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chương 1. Một số kiến thức liên quan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.Bài toán quy hoạch tuyến tính gốc và đối ngẫu . . . . . . . . . . . . . . . . 6
1.2.Phương pháp đơn hình giải bài toán QHTT . . . . . . . . . . . . . . . . . . 8
Chương 2. Bài toán quy hoạch toàn phương . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.Đặt vấn đề . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


2.2.Bài toán quy hoạch toàn phương dạng chuẩn . . . . . . . . . . . . . . . 13
2.2.1. Điều kiện tối ưu Karush-Kuhn-Tucker (KT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.Phương pháp điểm trong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1. Hướng đi sử dụng phương pháp Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2. Tính toán chiều dài mỗi bước lặp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3. Tiêu chuẩn hội tụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4. Thuật t oán điểm trong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.Phương pháp gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1. Ý tưởng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2. Thuật t oán gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.Phương pháp sử dụng các mở rộng của phương pháp đơn hình . . . .
18
2.5.1. Phát biểu bài toán và điều kiện tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2. Hướng giải quyết vấn đề . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chương 3. Giải bài toán Markowitz - tối ưu hóa danh mục đầu tư . . . 21
3.1.Tổng quan về bài toán Markowitz . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1. Phát biểu bài toán Markowitz cơ bản và các tính chất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2. Các khái niệm và thông số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3. Thuộc tính của bài toán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4. Một số kết quả nghiên cứu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.Phương pháp giải bài toán Markowitz gốc . . . . . . . . . . . . . . . . . . . 27
3.2.1. Mô hình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2. Điều kiện Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3. Trường hợp đặc biệt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4. Tìm nghiệm cơ sở của bài toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5. Ví dụ minh họa thuật giải . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2
3.3.Thuật giải Markowitz tổng quát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1. Mô hình bài toán tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2. Điều kiện tối ưu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3. Tìm nghiệm cơ sở của bài toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.4. Ví dụ minh họa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Phụ lục. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Tài liệu tham khảo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3
Lời mở đầu
Ngày nay, tối ưu hóa đã trở thành một lĩnh vực rất phát triển, góp phần quan
trọng trong việc ứng dụng khoa học công nghệ vào cuộc sống và sản xuất. Quy
hoạch toàn phương (QHTP) là một lĩnh vực của tối ưu hóa đã được phát triển
từ đầu của thế kỷ 20, đến nay toàn bộ lý thuyết toán học cho lĩnh vự c này có
thể nói là đã rất hoàn thiện. Chúng ta có hai lý do chính để yêu thích QHTP.
Đầu tiên là về mặt thực tiễn, một mô hình rất quan trọng trong vấn đề tối ưu
hóa đầu tư tài chính yêu cầu giải bài toán quy hoạch toàn phương. Lý do thứ
hai cho sự yêu thích của chúng ta đó là dạng bài toán và cách giải QHTP là
cầu nối tới một lĩnh vực mang tính rộng lớn hơn rất nhiều đó là quy hoạch lồi.
Chúng ta sẽ đi vào vấn đề ứng dụng thực tiễn của QHTP, một vấn đề mà rất
nhiều người quan tâm, không chỉ các nhà toán học mà các nhà kinh tế cũng
đang nghiên cứu tỉ mỉ mô hình này.
Khóa luận tậ p trung làm rõ một số vấn đề sau: Trình bày bài toán quy hoạch
toàn phương tổng quát, các phương pháp chủ yếu để giải bài toán. Sau đó đi
vào bài toán Markowitz: tối ưu hóa danh mục đầu tư chứng khoán. Bài toán
Markowitz được trình bày dưới 2 dạng, dạng gốc và dạng tổng quát. Và cuối
cùng là các ví dụ cũng như kết quả tính toán bằng số để minh họa cho bài toán.
Bố cục của khóa luận bao gồm 3 chương và 1 phụ lục:
• Chương 1 của khóa luận trình bày tóm tắt về bài toán quy hoạch tuyến
tính gốc và đối ngẫu, thuật toán đơn hình để giải bài toán quy hoạch tuyến
tính, các định lý và kết quả cơ bản liên quan đến khóa luận.
• Chương 2 của khóa luận đi vào tr ình bày tổng quan về bài toán quy hoạch
toàn phương, một số phương pháp chủ yếu để giải bài toán như phương

pháp điểm trong, phương pháp gradient, phương pháp sử dụng những mở
rộng của phương pháp đơn hình.
• Chương 3 trình bày các kiến thức về kinh tế liên quan, đặt bài toán
Markowitz, các điều kiện để bài toán tối ưu, sau đó đi vào trình bày
phương pháp giải bà i toán Markowitz gốc với các ràng buộc dạng đẳng
thức và bài toán Markowitz tổng quát với số ràng buộc lớn hơn, có thêm
các ràng buộc dạng bất đẳng thức.
• Phụ lục sử dụng bảng tính excel làm việc với bài toán trong thực tế.
Do thời gian thực hiện khóa luận không nhiều, kiến thức còn hạn chế nên
khi làm khóa luận không trá nh khỏi những hạn chế và sai sót. Tác giả mong
nhận được sự góp ý và những ý kiến phản biện của quý thầy c ô và bạn đọc.
Xin chân thành cảm ơn!
Hà Nội, ngày 19 tháng 05 năm 2010
Sinh viên
Trần Thị Như Hoa
5
Chương 1
Một số kiến thức liên quan
1.1. Bài toán quy hoạch tuyến tính gốc và đối ngẫu
Bài toán quy hoạch tuyến tính[1] (QHTT) tổng quát có thể được phát biểu
dưới dạng:
min(max){ f(x) :=
n

j=1
c
j
x
j
} (1.1)

thỏa mãn: D :=












n
j=1
a
ij
x
j
= b
i
, i = 1, ,m
1
,

n
j=1
a
ij
x

j
≤ b
i
, i = m
1
+ 1, ,m
2
,

n
j=1
a
ij
x
j
≥ b
i
, i = m
2
+ 1, ,m,
l
j
≤ x
j
≤ u
j
, j = 1, . ,n.
trong đó x
j
gọi là các biến, c

j
gọi là thành phần của véc tơ hệ số hàm mục
tiêu (hàm giá), a
ij
gọi là hệ số ràng buộc, b
i
gọi là hệ số vế phải, l
j
< u
j
lần lượt gọi là các cận dưới và cận trên (giới hạn dưới và trên) của biến x
j
(i = 1, ,m, j = 1, , n) .
Để nghiên cứu tính chất và cá c phương pháp giải bài toán quy hoạch tuyến
tính (1.1) người ta thường chuyển bài toán này về một trong hai dạng chính tắc
và chuẩn tắc. Trong khóa luận này chỉ để cập đến bài toán quy hoạch tuyến
tính dạng chính tắc như sau:
min f(x) = c
T
x
thỏa mãn: D
p
=

Ax = b
x ≥ 0.
(1.2)
Trong đó x = (x
1
, ,x

n
)
T
gọi là các biến cần tối ưu, c = (c
1
, ,c
n
)
T

véctơ hàm mục tiêu, ma trận A = (a
ij
)
m×n
là ma trận hệ số ràng buộc và
b = (b
1
, ,b
m
)
T
gọi là véctơ vế phải. Hàm f gọi là hàm mục tiêu, tập D
p
gọi
6
là tập ràng buộc. Ma trận A được giả thiết là có hạng đủ, rank A = m ≤ n và
bài toán gọi là bài toán QHTT gốc, ký hiệu là (P).
Một điểm x ∈ D
p
gọi là một điểm (hay phương án) chấp nhận được. Điểm

x

∈ D
p
gọi là nghiệm (hay phương án tối ưu) của bài toán (1.2) nếu f (x

) ≤
f(x) với mọi x ∈ D
p
. Vì D
p
là tập lồi đa diện, nên x ∈ D
p
là đỉnh của D
p
thì x
gọi là phương án cực biên (phương án cơ sở). Nếu x

là điểm cực biên (đỉnh)
của D
p
và tối ưu thì x

gọi là phương án cực biên tối ưu.
Cho một phương án cơ sở (hay một đỉnh) x, ký hiệu J
+
(x) = { j ∈ {1, ,n} :
x
j
> 0} gọi là tập chỉ số c ơ sở của x. Nếu |J

+
(x)| = m thì x gọi là phương án
không suy biến, còn nếu |J
+
(x)| < m thì x gọi là phương án suy biến. Ta công
nhận kết quả sau: tập hợp các véctơ
B
+
(x) = {A
j
| j ∈ J
+
(x)} (1.3)
gồm các véctơ cột của A sẽ là một hệ độc lập tuyến tính. Nếu r := |J
+
(x)| < m
thì ta bổ sung thêm m− r véctơ còn lại của A vào B
+
(x) sao cho ta thu được
hệ gồm m véctơ cột của A độc lập tuyến tính, ký hiệu là B(x). Hệ véctơ B(x)
gọi là hệ véctơ cơ sở (hay gọi tắt là cơ sở) của phương án cực biên x. Thông
thường ta thường gọi J(x) là tập chỉ số cơ sở thay cho gọi cơ sở B(x).
Lập hàm Lagra nge cho bài toán QHTT gốc (P) như sau:
L(x,y,s) = c
T
x+y
T
(b−Ax) + s
T
x (1.4)

trong đó y và s ≥ 0 là các nhân tử Lagrange. Khi đó bài toán đối ngẫu (dạng
Lagrange) của bài toán gốc (P) sẽ có dạng (sẽ ký hiệu là (D)):
maxg(y, s) = b
T
y
thỏa mãn: D
d
=

A
T
y+s = c
s ≥ 0.
(1.5)
Biến s gọi là biến bù, g gọi là hàm mục tiêu đối ngẫu và D
d
gọi là miền ràng
buộc đối ngẫu. Hiển nhiên D
d
cũng là tập lồi đa diện và bài toán (1.5) cũng là
bài toán QHTT.
Với mọi bộ ba (x,y, s) sao cho x ∈ D
p
và (y,s) ∈ D
d
ta đặt
τ
(x,y,s) = f(x) −g(y,s) = s
T
x, (1.6)

gọi là khoảng trống đối ngẫu. Theo định lý đối ngẫu yếu thì
τ
(x,y,s) ≥ 0, và
nếu
τ
(x,y,s) = 0 thì (x,y,s) sẽ là nghiệm của cặp bài toán gốc đối ngẫu ( P)-
(D). C òn theo định lý đối ngẫu mạnh thì nếu x

là nghiệm tối ưu của bài toán
gốc (P) thì sẽ tồn tại nghiệm tối ưu (y

,s

) của bà i toán đối ngẫu (D) sao cho
τ

=
τ
(x

,y

,s

) = 0 và ngược lại.
7
1.2. Phương pháp đơn hình giải bài toán QHTT.
Một trong những phương pháp nổi tiếng và hiệu quả là phương pháp đơn
hình, được G. B. Dantzig phát minh ra năm 1947. Phần này sẽ trình bày tóm
tắt lại tư tưởng cơ bản và nội dung của phương pháp đơn hình, phương pháp

này sẽ được sử dụng để tính toán nhiều trong khóa luận.
Trước hết ta chỉ ra một tính chất quan trọng của bài toán quy hoạch tuyến
tính là nghiệm sẽ nằm ở điểm cực biên.
Bổ đề 1.2.1. Giả sử bài toán QHTT gốc (1.2) có nghiệm tối ư u thì nó sẽ có
nghiệm tối ưu x

nằm ở đỉnh.
Do tính chất đặc biệt của bài toán QHTT nên thuật toán đơn hình đã tận
dụng rất hiệu quả các tính chất này để tạo ra một thuật toán rất hiệu quả. Đặc
biệt là các tính chất:
• Miền ràng buộc của bài toán QHTT là một tập lồi đa diện với số điểm cực
biên là hữu hạn.
• Nếu bài toán QHTT có nghiệm tối ưu thì sẽ có nghiệm tối ưu nằm ở đỉnh.
Ý tưởng của thuật toán
Bước 1: Xuất phát từ một đỉnh x
0
của miền ràng buộc.
Bước 2: Nếu x
0
là nghiệm tối ưu, dừng thuật toán. Nếu không chuyển
sang bước 3.
Bước 3: Từ x
0
tìm cách di chuyển đến đỉnh kề tiếp theo của miền ràng
buộc tốt hơn đỉnh x
0
(theo nghĩa giá trị hàm mục tiêu nhỏ hơn).
Bước 4: Lặp lại Bước 2, 3 với x
0
thay bằng x

1
.
Do số đỉnh của miền ràng buộc là hữu hạ n, nên nếu bài toán có nghiệm, sau
hữu hạn bước ta sẽ tìm được đỉnh tối ưu. Có nhiều vấn đề cần giải quyết trong
phương pháp đơn hình, bao gồm:
• Tìm đỉnh xuất phá t, vấn đề này thường đư ợc giải quyết dự a vào phương
pháp hai pha hoặc đánh thuế (hai phương pháp này cũng cho biết miền
ràng buộc có rỗng hay không).
• Kiểm tra bài toán có nghiệm hay vô nghiệm (có bị chặn dưới hay không).
• Kiểm tra đỉnh x
0
có là tối ưu hay không?
• Từ đỉnh x
0
làm thế nào di chuyển đến đỉnh x
1
tốt hơn x
0
?
8
Thuật toán đơn hình.
• Đầu vào: Ma trận A = (a
ij
)
m×n
, véctơ b, vé ctơ c. Phương án cơ sở x
0

cơ sở tương ứng J(x
0

).
• Đầu ra: Phương án cơ sở tối ưu x

và giá trị mục tiêu tối ưu f(x

) hoặc
chỉ ra bài toán không c ó nghiệm tối ưu (tức là hàm mục tiêu không bị
chặn dưới).
• Thuật toán:
Bước khởi tạo:
1. Tìm một phương án cơ sở xuất phát x
0
ứng với cơ sở xuất phát
J
0
:= B(x
0
).
2. Tính các hệ số khai triển Z = (z
jk
) và các ước lượng ∆
k
theo các
công thức tương ứng sau








A
k
=

j∈J
0
z
jk
A
j
∀ j =
1,n

k
=

j∈J
0
z
jk
c
j
− c
k
∀k /∈ J
0

k
= 0 ∀k ∈ J

0
Bước 1: Kiểm tra tiêu chuẩn tối ưu.
1. Nếu ∆
k
≤ 0 với mọi k /∈ J
0
thì x
0
là phương á n tối ưu. Kết thúc
thuật toán.
2. Nếu ∃∆
k
> 0, chuyển sang bước 2.
Bước 2: Kiểm tra tính bị chặn của hàm mục tiêu.
Với mỗi k /∈ J
0
mà ∆
k
> 0 ta kiểm tra các hệ số khai triển Z
k
= (z
jk
).
1. Nếu có một ∆
k
> 0 mà tất cả các hệ số khai triển z
jk
≤ 0, (∀ j ∈ J
0
)

thì kết luận hàm mục tiêu không bị chặn dưới. Bài toán không có
phương án hữu hạn. Kết thúc thuật toán.
2. Nếu với mọi k /∈ J
0
mà tồn tại ít nhất một hệ số z
jk
> 0 thì tiến hành
tìm phương án mới x
1
tốt hơn x
0
bằng cách chuyển sang bước 3.
Bước 3: Tìm phương án mới
1. Chọn véctơ A
s
đưa vào cơ sở: Có thể bất kỳ s /∈ J
)
sao cho ∆
s
> 0.
Thông thường chọn s sao cho ∆
s
lớn nhất
2. Chọn véctơ A
r
đưa ra khỏi cơ sở theo quy tắc:
9
3. Tính phương án mới x
1
và giá trị hàm mục tiêu mới theo công

thức:
x
1
=







0 với k /∈ J
0
,k = s
x
0
r
z
rs
với k = s
x
0
j

x
0
r
z
rs
z

js
với j ∈ J
0
f(x
1
) = f(x
0
) −
x
0
r
z
rs

s
Bước 4: Tính các hệ số khai triển và ước lượng mới theo công thức
z
1
jk
=

z
rk
z
rs
nếu j = s
z
jk

z

rk
z
rs
z
js
nếu j ∈ J
0
, j = r

1
k
= ∆
k

z
rk
z
r
s

s
Bước 5: Quay về bước 1 với phương án cơ sở mới x
1
và cơ sở mới
J
1
:= J(x
1
).
Để thuật tiện cho việc "thực hành" thuật toán đơn hình giải bài toán QHTT

dạng chuẩn tắc. Ta sử dụng một bả ng gọi là Bảng đơn hình gồm n+ 3 cột và
m+3 hàng như sau:
Cơ sở c
J
Phương án 1 2 ··· k ··· n
J x
J
c
1
c
2
··· c
k
··· c
n
J
1
c
j
1
x
j
1
z
j
1
1
z
j
1

2
··· z
j
1
3
··· z
j
1
n
J
2
c
j
2
x
j
2
z
j
2
1
z
j
2
2
··· z
j
2
3
··· z

j
2
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

J
m
c
j
m
x
j
m
z
j
m
1
z
j
m
2
··· z
j
m
3
··· z
j
m
n
f(x) ∆
1

2
··· ∆
k

··· ∆
n
Lưu ý phần bảng dành cho các hệ số khai triển z
jk
:
• Các c ột ứng với các j ∈ J
0
sẽ là các véctơ đơn vị với hệ số 1 nằm trên
dòng với chỉ số j.
• Với k /∈ J
0
thì cột k của bàng đơn hình là hệ số khai triển của A
k
của ma
trận A theo cơ sở J
0
. Ta ký hiệu cột này là Z
k
nghĩa là A
k
= B
J
0
Z
k
hay
Z
k
= (B
J

0
)
−1
A
k
, ở đây B
J
0
là ma trận cơ sở (B
J
0
= A
j
| j ∈ J
0
.
Đặc biệt khi ta chọn được một ma trận B
J
0
có dạng ma trận đơn vị thì hệ
số khai triển trên các cột j với j ∈ J
0
sẽ chính là cột véctơ đơn vị z
jk
= e
j
,
còn các hệ số khai triển trên các cột k /∈ J
0
chính là z

jk
= A
k
.
10
• Dòng ước lượng là dòng cuối cùng của bảng và được tính bởi∆
k
= c
T
J
0
Z
k

c
k
và ∆
j
= 0,(∀ j ∈ J
0
).
• Giá trị hàm mục tiêu chính là f(x) = c
T
J
0
x
J
)
.
Một trong những chi tiết quan trọng trong phương pháp đơn hình là: Từ

nghiệm x

của bài toán gốc (P), ta có xây dựng lại được nghiệm đối ngẫu hay
không?. Phương pháp đơn hình gốc - đối ngẫu sẽ cho phép thu đư ợc bộ ba
nghiệm (x

,y

,s

) cho cặp bài toán gốc, đối ngẫu. Trên thực tế, ta có thể xuất
phát từ nghiệm của bài toán gốc (P) là x

với cơ sở A
J

, ta có thể thu được
nghiệm của bài toán đối ngẫu (D) như sau:
• Giả sử x

là nghiệm của bài toán gốc (P) ứng với cơ sở tối ưu A
J

. Khi đó
ta có:
x

J

= A

−1
J

b,
với x

J

= (x

j
)
j∈J

và (x

j
)
j∈J

= (0).
• Khi đó A
J

cũng sẽ là cơ sở đối ngẫu của bài toán đối ngẫu (D) và nghiệm
đối ngẫu (y

,s

) được tính theo công thức:

y

= (A
−1
J

)
T
c
J

, s

= c− A
T
y

,
trong đó c
J

= (c
j
)
j∈J

.
• Khi đó khoảng trống đối ngẫu sẽ là:
τ


= (x

)
T
s

= 0. Theo định lý về độ
lệch bù thì nếu x

j
> 0 thì s

j
= 0, do đó dễ thấy s

J

= 0.
Trong thực tế, bài toán QHTT thường không phải là bài toán dạ ng chuẩn tắc
với véctơ vế phải b không âm, nên ta không thể có ngay được phương án xuất
phát x
0
để thực hiện phư ơng pháp đơn hình. Do vậy người ta thường sử dụng
một trong hai phương pháp: Phư ơng pháp đơn hình hai pha và phương pháp
đánh thuế. Trong khóa luận này sẽ sử dụng phương pháp đơn hình hai pha với
nội dung được tóm tắt như sau:
Trước hết, đối với bài toán gốc (P), không mất tính tổng quát ta có thể xem
các b
i
≥ 0 với mọi i =

1,m . Nếu trái lại ta nhân hai vế của ràng buộc thứ i với
−1. Ta lập bài toán phụ sau
min f
a
(u) :=
m

j=1
u
n+ j
(1.7)
thoả mãn D
a
:=








n
j=1
a
ij
x
j
+ u
n+i

= b
i
, (i =
1,m)
x
j
≥ 0, ( j = 1,n)
u
n+i
≥ 0, (i =
1,m)
11
Các biến u
n+i
với (i = 1,m) gọi là các biến giả.
Nếu ta ký hiệu e = (1,1, ,1)
T
là véctơ gồm m thành phần là 1, u =
(u
n+1
,u
n+2
, , u
n+m
)
T
và E là ma trận đơn vị cấp m thì ta có thể viết bài
toán trên dưới dạng
min f
a

(u) := e
T
u (1.8)
thoả mãn D
a
:=

Ax+Eu = b
x ≥ 0,u ≥ 0
Khi đó, quan hệ giữa hai bài toán (1.7) và (1.8) được chỉ ra như sau:
• Bài toán (1.8) có một phương án cơ sở xuất phát là (x,u)
T
:= (0,b)
T
.
• Bài toán (1.2) có phương án chấp nhận được khi và chỉ khi bài toán phụ
(1.8) có phương án tối ưu (
x,u)
T
với tất cả các biến giả u
n+i
= 0, (i = 1,m.
Do đó phương pháp đơn hình hai pha được thực hiện như sau:
Pha 1: Lập bài toán phụ cho bài toán (P), giải bài toán phụ bằng phương
pháp đơn hình. Nếu bà i toán phụ vô nghiệm hoặc có nghiệm không là
nghiệm chấp nhận c ủa bài toán (P), dừng thuật toán. Ngược lại, chuyển
sang pha 2.
Pha 2: Sử dụng thuật toán đơn hình giải bài toán (P) với phương án xuất
phát thu được từ pha 1.
12

Chương 2
Bài toán quy hoạch toàn phương
2.1. Đặt vấn đề
Chúng ta vừa xét bài toán QHTT với hàm mục tiêu và các ràng buộc là
tuyến tính. Trong thực tế thì có một số lượng lớn các ứng dụng, bài toán mà
hàm mục tiêu của chúng không ở dạ ng tuyến tính mà có dạng bậc hai. Những
bài toán mà hàm mục tiêu là bậc hai của các biến tối ưu và tất cả các ràng buộc
là tuyến tính thì bài toán có dạng quy hoạch toàn phương (QHTP).
Với bài toán dạng này thì các phương pháp giải có mối quan hệ tới các
mở rộng của bài toán quy hoạch tuyế n tính. Trong phần đầu tiên sẽ giới thiệu
về bà i toán quy hoạch toàn phương dạng chuẩn và điều kiện tối ưu Karush
Kunh Tucker. P hần 2, 3 và 4 sẽ đề cập tới phương pháp điểm trong, phương
pháp active-set, phương pháp gradient để giải quyết bài toán. Trong phần cuối
chương sẽ đề cập đến phương pháp sử dụng các mở rộng của phương pháp đơn
hình để giải bài toán QHTP.
2.2. Bài toán quy hoạch toàn phương dạng chuẩn
Bài toán quy hoạch toàn phương dạng chuẩn phát biểu dưới dạng:
minc
T
x+
1
2
x
T
Qx
thỏa mãn:

Ax = b (a)
x ≥ 0 (b)
(2.1)

Trong đó x
n×1
là biến tối ưu, A
m×n
là ma trận ràng buộc b
m×1
là véctơ của
các ràng buộc vế phải, c
n×1
là véctơ của hàm mục tiêu, Q
n×n
là ma trận trong
hàm mục tiêu. Dễ thấy rằng bài toán quy hoạch toàn phương là lồi khi Q
n×n

ma trận vuông xác định dương.
13
2.2.1. Điều kiện tối ưu Karush-Kuhn-Tucker (KT)
Điều kiện KT [4] này là điều kiện cần và đủ để bài toán có nghiệm. Các điều
kiện tối ưu này gắn với việc chuyển bài toán QHTP về dạng bài toán không
ràng buộc bằng cách xét hà m Lagrange. Hàm Lagrange[4] gắn với bài toán
(1.1) có dạng như sau:
L(x,u,v,s) = c
T
x+
1
2
x
T
Qx+u

T
(−x+s
2
) +v
T
(−Ax+b)
Trong đó u ≥ 0 là nhân tử Lagrange liên kết với ràng buộc bất đẳng thức x ≥ 0
, s là biến phụ liên kết với ràng buộc x ≥ 0, v
m×1
là nhân tử Lagrange liên kết
với ràng buộc Ax = b (hay −Ax+b = 0)
Lấy vi phân hàm Lagra nge theo từng biến ta được:

L

x
= 0 → c+Qx− u− A
T
v = 0

L

v
= 0 → Ax−b = 0

L

u
= 0 → −x+s
2

= 0

L

s
= 0 → u
i
s
i
= 0 i = 1 n
u
i
≥ 0 i = 1 n
(2.2)
Điều kiện tối ưu của bài toán QHTP đạt được khi giải quyết hệ phương trình
sau:
(a) Ax−b = 0 (Điều kiện cơ sở)
(b) − Qx+ A
T
v+u = c (Điều kiện đối ngẫu)
(c) u
i
x
i
= 0 i = 1 n (Điều kiện phụ bổ sung)
(d) x
i
≥ 0, u
i
≥ 0 i = 1 n

(2.3)
Định nghĩa ma trận chéo cỡ n× n:
U = diag[u
i
] X = diag[x
i
]
Và véctơ e: e
T
= (1. . .1)
Điều kiện phụ bổ sung (2.3 c) được viết lại như sau: XUe = 0.
2.3. Phương pháp điểm trong
Phương pháp điểm trong (interior point method) cơ bản đi giải quyết hệ
phương trình (2.3). Hệ (2.3) là phi tuyến bởi điều kiện (2.3 c). Chúng ta sẽ sử
dụng một phương pháp lặp như Newton-Raphson để giải hệ phương trình này.
14
Các phương trình tuyến tính sẽ thỏa mãn ở mỗi bước lặp, với phương trình (2.3
c) không thỏa mãn ở mỗi bước, ta sử dụng một tham số
µ
> 0 để chỉ thị lỗi
này. Điều kiện (2.3 c) được viết lại như sau:
XUe =
µ
e
2.3.1. Hướng đi sử dụng phương pháp Newton-Raphson
Ở mỗi lần lặp ta c ần tính toán giá trị mới của (2n + m) biến (x,u,v). Sử
dụng phương pháp Newton-Raphson giá trị mới của các biến đạt được bằng
cách giải hệ sau:



A 0 0
−Q I A
T
U X 0




d
x
d
u
d
v


= −


Ax
k
− b
−Qx+A
T
v
k
+ u
k
− c
XUe−

µ
k
e


.
Biến đổi hệ này ta tính được d
v
:
A[XQ+U]
−1
XA
T
d
v
= r
p
+ A[XQ+U]
−1
(Xr
d
− r
c
)
Biết d
v
ta tính được d
x
, d
u

:
d
x
= [XQ+U]
−1
(XA
T
d
v
− Xr
d
+ r
c
)
d
u
= X
−1
(r
c
−Ud
x
)
2.3.2. Tính toán chiều dài mỗi bước lặp
Kí hiệu
α
là chiều dài mỗi bước lặp, ta có công thức tính phần tử thứ (k+1)
qua phần tử thứ k như sau:
x
k+1

= x
k
+
α
p
d
x
u
k+1
= u
k
+
α
d
d
u
v
k+1
= v
k
+
α
d
d
v
(2.4)
Chiều dài của mỗi bước được chọn:
α
p
=

β
min[1,−
x
i
dx
i
,dx
i
< 0]
α
d
=
β
min[1,−
u
i
du
i
,du
i
< 0]
0 ≤
β
≤ 1,
β
thường lấy bằng 0,999
(2.5)
15
2.3.3. Tiêu chuẩn hội tụ
Với

ε
1
,
ε
2
,
ε
3
là các số dương nhỏ. Sử dụng tính chất tối ưu:
δ
p
=
||Ax
k
− b||
||b|| +1

ε
1
δ
d
=
||r
d
||
||Qx
k
+ c||+ 1

ε

2
µ

ε
3
Với
µ
k
=
(x
k
)
T
u
n
, n là số biến tối ưu
(2.6)
Với ý tưởng như trên, thuật toán điểm trong[4] được mô tả như sau:
2.3.4. Thuật toán điểm trong.
Bước khởi tạo: Đầu tiên khởi tạo k = 0, giá trị tùy ý (≥ 0) của x,u,v ví
dụ x
k
= u
k
= e = (1 1) và v
k
= 0
Điểm kế tiếp x
k+1
được tính như sau:

Bước 1: Kiểm tra tiêu chuẩn hội tụ. Đặt
µ
k
=
[
(x
k
)
T
u
n
]
(k+ 1)
Kiểm tra điều kiện
δ
p
=
||Ax
k
− b||
||b|| +1

ε
1
δ
d
=
||r
d
||

||Qx
k
+ c||+ 1

ε
2
µ

ε
3
(2.7)
Bước 2: Tính r
p
, r
d
, r
c
r
p
= −Ax
k
+ b
r
d
= Qx
k
− A
T
v
k

− u
k
+ c
r
c
= −XUe+
µ
k
e
(2.8)
Bước 3: Tìm d
v
Bước 4: Tìm d
x
, d
u
.
Bước 5: Tính toán bước tăng
α
p
,
α
d
.
Bước 6: Tính giá trị điểm kế tiếp x
k+1
, u
k+1
, v
k+1

.
16
2.4. Phương pháp gradient
2.4.1. Ý tưởng
Ta biết rằng véc tơ gradient của f tại x
0
có dạng:
∇f(x
0
) = (
δ
f(x
0
)
δ
x
1
,
δ
f(x
0
)
δ
x
2
, ,
δ
f(x
0
)

δ
x
n
)
Véctơ gradient ∇f(x
0
) chỉ ra hướng tăng nhanh nhất c ủa hàm mục tiêu tại x
0
.
Vậy véctơ −∇ f(x
0
) gọi là đối gradient chỉ r a hướng giảm nhanh nhất của hàm
mục tiêu tại x
0
. Từ ý tưởng trê n thì thuật toán gradient[1] được phát biểu như
sau:
2.4.2. Thuật toán gradient
• Đầu vào: Ma trận A = (a
ij
)
m×n
, véctơ b, vé ctơ c. Phương án cơ sở x
0

cơ sở tương ứng J(x
0
).
• Đầu ra: Phương án cơ sở tối ưu x

và giá trị mục tiêu tối ưu f(x


) hoặc
chỉ ra bài toán không c ó nghiệm tối ưu (tức là hàm mục tiêu không bị
chặn dưới).
• Thuật toán:
Bước 1: Tìm phương án x
0
thuộc miền ràng buộc M, cho k = 0.
Bước 2: Đã có x
k
(k ≥ 0) ta xác định độ dài bước: Việc dịch chuyển từ
t
k
theo hư ớng −∇f(x
k
) tới điểm x
k
+ [−∇f(x
k
)]
λ
kéo theo biến đổi hàm
fmột số gia:
∆f = − f[x
k
− ∇f(x
k
)
λ
] + f(x

k
)
Giá trị
λ
mà với nó số gia ∆ f đạt giá trị lớn nhất (tức là hàm f giảm được
nhiều nhất) có thể xác định tại điểm dừng của hàm ∆f:
∆f
d
λ
= 0 ≈ −∇f[x
k
− ∇f(x
k
)
λ
](−∇f(x
k
) = 0 (*)
Từ phương trình (*) ta tìm được điểm dừng
λ

.
Nếu tại điểm dừng
λ

ta có
d
2
∆f
d

λ
2
< 0 thì ta có điểm cực đại
λ

của ∆f.
Do đó:
x
k+1
= x
k
+ [−∇f(x
k
)]
λ

17
Bước 3: Thử xem x
k+1
có thuộc M? Nếu điểm x
k+1
vượt ra khỏi miền
ràng buộc thì ta phải r út ngắn bước
λ
sao cho được một điểm trên biên
theo hướng đã chọn.
Bước 4: Kiểm tra x
k+1
là điểm tối ưu hay không?
1. Nếu ∇f(x

k+1
) = 0 thì x
k+1
là điểm tối ưu.
2. Nếu ∇ f(x
k+1
) = 0 thì x
k+1
chưa là điểm tối ưu, ta tăng k lên 1 và quay
trở lại bước 2.
2.5. Phương pháp sử dụng các mở rộng của phương pháp đơn hình
Trong chương thứ nhất chúng ta đã đi tìm hiểu phương pháp đơn hình và
ứng dụng để giải các bài toán quy hoạch tuyến tính, trong phần này ta sẽ xẽ
xem xét những mở rộng của phương pháp này[6] để giải bài toán quy hoạch
toàn phương. Đầu tiên ta kiểm tra điều kiện Karush Kuhn-Tucker (KKT) cho
bài toán quy hoạch toàn phương và nhận thấy từ điều kiện này trả về một hệ
các phương trình tuyến tính và các ràng buộc bổ sung, để giải được hệ này cần
sử dụng tới các mở rộng của phương pháp đơn hình.
2.5.1. Phát biểu bài toán và điều kiện tối ưu
Dạng của bài toán quy hoạch toàn phương với các ràng buộc bất đẳng thức
min f(x) = c
T
x+
1
2
x
T
Qx
thỏa mãn:


Ax ≤ b (a)
x ≥ 0 (b)
(2.9)
Hàm Lagrange gắn với bài toán:
L(x,
µ
) = cx+
1
2
x
T
Qx+u
T
(−x+s
2
) +
µ
(Ax−b)
18
Trong đó
µ
m×1
là nhân tử Lagrange liên kết với ràng buộc Ax ≤ b.Điều kiện
KKT cho tối ưu cục bộ của bài toán là:
δ
L
δ
x
j
≥ 0, j = 1 n c+x

T
Q+
µ
A ≥ 0 (a)
δ
L
δµ
j
≤ 0, i = 1 m Ax−b ≤ 0 (b)
x
j
δ
L
δ
x
j
= 0, j = 1. . .n x
T
(c
T
+ Qx+ A
T
µ
) = 0 (c)
µ
j
g
i
(x) = 0, i = 1 m
µ

(Ax−b) = 0 (d)
x
j
≥ 0, j = 1 n x ≥ 0 (e)
µ
j
≥ 0, i = 1 m
µ
≥ 0 (f)
(2.10)
Biến đổi các phương trình ( 2.10 a) - (2.10 e) về dạng bài toán giải dễ dàng
hơn bằng cách thêm biến phụ không âm y ∈ R
n
vào bất đẳng thức (2.10 a) và
v ∈ R
m
vào bất đẳng thức (2.10 b) ta được
c
T
+ Qx+ A
T
µ
T
− y = 0 và Ax− b+ v = 0
Với việc di chuyển các hằng số về bên phải, điều kiện KKT được viết lại như
sau:
Qx+A
T
µ
T

− y = −c
T
(a)
Ax+v = b (b)
x ≥ 0,
µ
≥ 0, y ≥ 0, v ≥ 0 (c)
y
T
x = 0,
µ
v = 0 (d)
(2.11)
2.5.2. Hướng giải quyết vấn đề
Ta chuyển bài toán (2.11 a) - (2.11 d) về dạng của bài toán quy hoạch tuyến
tính, khi đó ta sẽ áp dụng được thuật toán đơn hình với bài toán này. Để chuyển
bài toán về dạng tuyến tính thì cần biến đổi dạng của phương trình (2.11 d).
• Nếu các giá trị vế phải là âm thì nhân phương trình với (-1) .
• Thêm các biến giả vào mỗi phương trình.
• Ta lập bài toán phụ với hàm mục tiêu là tổng của cá c biến giả trên. Bài
toán phụ sẽ giải theo phương pháp đơn hình (cụ thể là thuật toán đơn hình
hai pha đề cập ở chương một).
Để minh họa cho phương pháp này chúng ta xét ví dụ sau:
Ví dụ:
min f(x) = −8x
1
− 16x
2
+ x
2

1
+ 4x
2
2
thỏa mãn: x
1
+ x
2
≤ 5, x
1
≤ 3, x
1
≥ 0, x
2
≥ 0
(2.12)
19
Lời giải: Chuyển bài toán về dạng bài toán QHTP
c
T
=

−8
−16

, Q =

2 0
0 8


, A =

1 1
1 0

, b =

5
3

x = (x
1
,x
2
), y = (y
1
,y
2
),
µ
= (
µ
1
,
µ
2
), v = (
ν
1
,

ν
2
)
(2.13)
Ràng buộc tuyến tính (2.11 a) và (2.11 b) được chuyển về dạng sau:
2x
1
+
µ
1
+
µ
2
−y
1
= 8 (2.14)
8x
2
+
µ
1
− y
2
= 16
x
1
+ x
2
+
ν

1
= 5
x
1
+
ν
2
= 3
Ta thêm các biến giả vào mỗi ràng buộc và tìm giá tr ị nhỏ nhất của tổng các
biến này.
min a
1
+ a
2
+ a
3
+ a
4
thỏa mãn:
2x
1
+
µ
1
+
µ
2
−y
1
+a

1
= 8
8x
2
+
µ
1
− y
2
+ a
2
= 16
x
1
+ x
2
+
ν
1
+a
3
= 5
x
1
+
ν
2
+ a
4
= 3

(2.15)
Tất cả các biến ≥ 0.
Sử dụng thuật toán đơn hình hai pha, các giá trị tính theo các bước lặp như
bảng sau ta thu được nghiệm tối ưu của bài toán ban đầu là: (x

1
,x

2
) = (3,2)
Bảng : Giá trị tại cá c bước lặp của thuật toán đơn hình hai pha giải bài toán
QHTP
Bước
lặp
Biến sử dụng Giá tr ị biến Giá trị
hàm mục
tiêu
Biến
thêm
vào
Biến
loại
bỏ
1 (a
1
,a
2
,a
3
,a

4
) (8,16,5,3) 32 x
2
a
2
2 (a
1
,x
2
,a
3
,a
4
) (8,2,3,3) 14 x
1
a
3
3 (a
1
,x
2
,x
3
,a
4
) (2,2,3,0) 2
µ
1
a
4

4 (a
1
,a
2
,a
3
,
µ
1
) (2,2,3,0) 2
µ
1
a
1
5 (
µ
2
,a
2
,a
3
,a
4
) (2,2,3,0) 0
20
Chương 3
Giải bài toán Markowitz - tối ưu hóa
danh mục đầu tư
3.1. Tổng quan về bài toán Ma rkowitz
Quy hoạch toàn phương có rất nhiều ứng dụng trong thực tế, nhất là trong

lĩnh vực kinh tế. Một ứng dụng điển hình đó là bài toán Markowitz. Harrry
Markowitz là nhà toán học và nhà kinh tế học, ông đã nghiên cứu quá trình
đầu tư trong kinh tế và đề xuất lên bài toán Markowitz về tối ưu hóa danh mục
đầu tư. Với công trình này ông đã đạt giải Nobel về kinh tế. Bài toán này được
mô hình hóa dưới dạng quy hoạch toàn phương, thông qua việc giải bài toán
các nhà đầu tư sẽ có thêm phương hướng để lựa chọn danh mục đầu tư của
mình.
Để hiểu được bài toán này, trước hết chúng ta cầ n có một chút kiến thức về
lĩnh vực kinh tế [2]. Đầu tiên chúng ta cùng tìm hiểu một vài khái niệm và các
đại lượng ngẫu nhiên có tính quy luật trong kinh tế:
+ Lợi suất đầu tư vào một tài sản
Lợi suất đầu tư trên một tài sản tài chính là thu nhập mà tài sản này mang
lại và sự tăng vốn (tăng giá trị tài sản) c ủa chính tài sản đó. Như vậy lợi suất
tăng vốn bao gồm cả hiệu suất sinh lợi do thu nhập từ tài sản mang lạ i và giá
trị vốn tăng thêm so với giá mua ban đầu của tài sản. Công thức đánh giá lợi
suất của một tài sản là:
R
t
=
D
t
+ P
t
− P
t−1
P
t−1
Trong đó:
• R
t

là lợi suất của tài sản đầu tư trong thời kỳ t.
• D
t
là thu nhập từ tài sản mà nhà đầu tư nhận được trong thời kỳ t.
21
• P
t
là giá tr ị của tài sản ở cuối kỳ t.
• P
t−1
là giá tr ị c ủa tài sản ở cuối kỳ t − 1.
Công thức trên cũng được dùng để đánh giá hiệu quả của các tài sả n đầu tư
trong quá khứ. Để đánh giá hiệu quả đầu tư trong tương lai nhà đầu tư phải
tính đến sự không chắc chắn của lợi suất. Công thức tính lợi suất kỳ vọng:
E(R) =
n

i=1
P
i
R
i
chính là công thức để đánh giá hiệu quả đầu tư mong đợi về một tài sản cá
biệt. Nếu nhà đầu tư tin rằng tương lai chắc chắn thu được các lợi suất mong
đợi hoặc nếu các quan sát trong quá khứ có thời gian đủ dài để bộc lộ đầy đủ
xu hướng thì có thể đánh giá lợi suất kỳ vọng bằng trung bình cộng c ủa các lợi
suất thực hiện trong N thời kỳ, tương đương với:
E(R) =
1
N

N

t=1
R
t
+ Lợi suất của một danh mục đầu tư
Công thức trên để đánh giá hiệu quả của một tài sản. Nếu nhà đầu tư không
chỉ đầu tư vào một tài sản mà đầu tư vào nhiều loại tài sản thì phải có những
phương pháp đánh giá hiệu quả đầu tư cho một danh mục tài sản. Một danh
mục đầu tư chứng khoán bao gồm nhiều loại chứng khoán khác nhau. Mỗi
loại chứng khoán lại có lợi suất đầu tư riê ng. Vì thế lợi suất ước tính của một
danh mục đầu tư chứng khoán là bình quân của lợi suất thu được từ mỗi chứng
khoán trong danh mục đầu tư đó. Công thức tính:
E(r
p
) = w
1
E(r
1
) +w
2
E(r
2
) +··· + w
n
E(r
n
) =
n


i=1
w
i
E(r
i
)
Trong đó w
1
,w
2
, , w
n
là tỷ trọng vốn đầu tư vào từng loại tài sản, E(r
i
) là
lợi suất đầu tư tương ứng.
+ Rủi ro danh mục đầu tư
Rủi ro của từng chứng khoán là sự biến thiên của kết quả đó từ một nguyên
nhân ban đầu, được lượng hóa bằng độ lệch chuẩn của lợi suất thu được. Cũng
giống như từ ng chứng khoán riêng lẻ, rủi ro tổng thể của danh mục chứng
khoán là khả năng biến động trong tương lai về kết quả thu được từ danh mục
đầu tư. Vì thế khi phân tích rủi ro của một danh mục đầu tư chứng khoán nguời
ta phải quan tâm đến rủi ro c ủa cả danh mục chứ không phải rủi r o của một
loại chứng khoán nào.
22
Trong một danh mục đầu tư mỗi loại chứng khoán có mức rủi ro khác nhau.
Vì thế đa dạng hóa đầu tư (không bỏ tất c ả trứng vào một rổ) trở thành một
nguyên tắc trong đầu tư chứng khoán và là giải pháp quan trọng để giảm thiểu
rủi ro cho toàn danh mục.
Thực tế cũng chứng minh rằng, nhiều khi bổ sung vào một danh mục đầu

tư các chứng khoán có tính rủi ro lại là yếu tố quan trọng góp phần giảm thiểu
rủi ro cho toàn danh mục đầu tư. Bởi vì một khi danh mục đầu tư có nhiều loại
chứng khoán khác nhau thì giữa chúng sẽ có tác động tương tác, bù trừ rủi ro
lẫn nhau và tạo ra một kết quả đầu tư chung cho toàn danh mục. Để xác định
hệ số rủi ro giữa hai chứng khoán và giữa chứng khoán với từng danh mục
người ta cần xem xét hệ số covariance (tích sai - đồng phương sai) và hệ số
tương quan (correlation coefficient) của da nh mục đầu tư. Công thức tính hệ
số covariance giữa hai chứng khoán như sau:
Cov(r
a
,r
b
) =
σ
A,B
=

P
i
[r
a
− E(r
a
)][r
b
− E(r
b
)]
Công thức covariance chỉ cho thấy mối tương tác giữa hai chứng khoán
cùng chiều hay ngược chiều mà chưa chỉ ra mức độ biến động của chúng. Để

định lượng mức độ biến động này ta sử dụng đến hệ số tương quan để giới hạn
cova riance trong khoảng từ −1 đến +1, công thức tính:
Cor(r
a
,r
b
) = Cov(r
a
,r
b
)/
σ
a
σ
b
+ Lý thuyết danh mục đầu tư hiện đại
Những người theo lý thuyết danh mục đầu tư hiện đại cho rằng thị trường
chứng khoán là một thị trường hiệu quả, có nghĩa là giá cả chứng khoán phản
ứng tức thì với hầu hết các thông tin về đầu tư nên không nhà phân tích nào
được coi là sáng suốt trên khía c ạnh tổng thể c ủa thị trường. Trọng tâm chính
của nhà quản lý danh mục đầu tư là lựa chọn một tập hợp các khoản mục đầu
tư có thể mang lại cho nhà đầu tư thu nhập mong đợi cao nhất theo từng mức
rủi ro nhất định.
Ta vừa xem xét một vài khái niệm về lĩnh vực kinh tế, Ma rkowitz dựa vào
các lý thuyết trên và đưa ra mô hình Markowitz [5] về cách lựa chọn danh mục
đầu tư hiệu quả nhất. Nào chúng ta hãy cùng tìm hiểu mô hình[10] này trong
sự tác động giữa các biến ngẫu nhiên.
3.1.1. Phát biểu bài toán Markowitz cơ bản và các tính chất
Mục tiêu của bài toán Markowitz là tìm tỷ trọng của các chứng khoá n trong
danh mục đầu tư sao cho giảm tới mức tối thiểu phương sai (rủi r o) của toàn

23
danh mục mà đạt được một mức thu nhập nhất định. Giải bà i toán với các mức
thu nhập mục tiêu nguời ta xác định được một tập hợp các danh mục đầu tư
hiệu quả. Từ đây nhà đầu tư có thêm một phương hướng đầu tư dự a trên quan
điểm của mình về việc đánh đổi thu nhập và rủi ro.
Trong phần này bài toán chỉ tập trung vào mô tả kỹ bà i toán trong sự tác
động của các biến ngẫu nhiên, các tính chất cơ bản nhất.
Phát biểu bài toán:
Min : rủi ro của toàn danh mục đầu tư
Thỏa mãn:
• giá trị kỳ vọng lợi nhuận trả về hay lợi nhuận ước tính của toàn danh mục
đầu tư phải lớn hơn mức tối thiểu (mức mục tiêu đề ra) cho phép.
• các tỷ trọng đầu tư ứng với từng chứng khoán: các tỷ trọng này phải không
âm và có tổng bằng 1.
Các ký hiệu sử dụng:
Chỉ số j : chỉ mục đầu tư thứ j (hay chứng khoán j)
Các tham số:
• R
j
lợi nhuận trả về của chứng khoán j (biến ngẫu nhiên)
• m
j
giá trị lợi nhuậ n kỳ vọng của biến ngẫu nhiên R
j
• M giá trị lợi nhuận tối thiểu (giá trị mục tiêu đề ra) c ủa toàn danh mục
đầu tư trả về.
Biến: x
j
tỷ trọng đầu tư vào chứng khoán j.
Mô hình toán học:

min Var[

j
R
j
x
j
]
Thỏa mãn:

j
m
j
x
j
≥ M

j
x
j
= 1
x
j
≥ 0 ∀ j
(3.1)
Trong bài toán này, hàm mục tiêu là hàm của biến ngẫu nhiên R
j
. Ta có thể
viết lại hàm mục tiêu theo hệ số covariance:
Var[


j
R
j
x
j
] =

jk
x
j
Cov[R
j
R
k
]x
k
24

×