Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 9 (804)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.05 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

!
3n + 2
2
Câu 1. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 2. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
Câu 3. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −4.



15
30

D. 3.

bằng
C. 2.

D. −2.

Câu 4. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
Câu 5. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.
x−3
Câu 6. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.

1
= 0 với k > 1.
nk
1
D. lim √ = 0.
n


B. lim

C. 144.

D. 2.

C. +∞.

D. 1.

Câu 7. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 8. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √


2 3
A. 1.
B. 2.
C.
.
D. 3.
3
Câu 9. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
B. 26.
C. 2.
D.
.
13
Câu 10. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.

.
C.
.
D. a3 .
6
24
12
Trang 1/10 Mã đề 1


Câu 11. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 135.

Câu 12. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.

A. Câu (III) sai.

B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.
Câu 13. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
4a
4a 3
2a3
2a 3
.
B.
.
C.
.
D.
.
A.
3

3
3
3
Câu 14. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
1 + 2 + ··· + n
Câu 15. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1

1
A. lim un = 1.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 16. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
!2x−1
!2−x
3
3
Câu 17. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
Câu 18. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1

B. −∞; − .
C.
; +∞ .
A. − ; +∞ .
2
2
2

!
1
D. −∞; .
2

Câu 19. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 20. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
0 0 0 0
0
Câu 21.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6

a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2
Câu 22.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .
D.
.
12
4

4
2

Trang 2/10 Mã đề 1


Câu 23. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

C. |z| = 17.
D. |z| = 10.
A. |z| = 10.
B. |z| = 17.
5
Câu 24. Tính lim
n+3
A. 0.
B. 3.
C. 2.
D. 1.
Câu 25. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
π
Câu 26. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
Z 1
Câu 27. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
B. 0.
C. 1.
D. .
A. .
4
2
Câu 28.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là


a3 2
a3 3
a3 2
3
.
B.
.
C. a 3.
D.
.
A.
12
4
6
Câu 30. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).


Câu 31. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4


x2 + 3x + 5
Câu 33. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 1.
D. 0.
4
4
Câu 34. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. Bốn mặt.
Trang 3/10 Mã đề 1


Câu 35. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A.
.
B. 1.
C. 2.
2
Câu 36. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).

C. (−∞; +∞).

D.

1
.
2

D. [−1; 2).

Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 9.
D. .
A. 6.
B. .
2
2
0 0 0
Câu 38. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
a
3
a

3
a3
A. a3 .
B.
.
C.
.
D.
.
2
6
3
Câu 39. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
1
B.
.
C.
.
D. .
A. √ .
n
n
n
n


Câu 40.

√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 2 3.
B. 3.
C. 3 2.
D. 2 + 3.
Câu 41. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. −2e2 .
D. 2e4 .
Câu 43. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.

c+3
c+2
c+1
c+2
Câu 44. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 45. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 46. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
9t
Câu 47. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 2.
D. 1.
1 − 2n
Câu 48. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
 π
x
Câu 49. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2



3 π6
2 π4
1 π
A. 1.
B.
e .
C.
e .
D. e 3 .
2
2
2
Trang 4/10 Mã đề 1


Câu 50. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Câu 51. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
a 3
a3 3
a3 2

a3 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12


4n2 + 1 − n + 2
Câu 52. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. +∞.
D. 1.
2

Câu 53. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 58
3a 38
a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 54.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.

B.
.
C.
.
D.
.
4
6
2
12
Câu 55.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
Z
C.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

( f (x) − g(x))dx =

B.
Z
D.


( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.
Z
g(x)dx.

Câu 56. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 57. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).




D. (4; 6, 5].

− 3m + 4 = 0 có nghiệm
3
9

C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
 π π
Câu 59. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.

Câu 58. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 60. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.

D. m > 0.


Câu 61. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.


Câu 62. Phần thực và √
phần ảo của số phức
z
=
2

1

3i lần lượt √l


A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 8.


D. 30.
Trang 5/10 Mã đề 1


Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 65. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 66. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 6
a3 5
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 67. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là



a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
Câu 68. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
d = 30◦ , biết S BC là tam giác đều
Câu 69. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
26
16
Câu 70. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có hai.
D. Có một.
x+1
bằng
x→−∞ 6x − 2
B. 1.

Câu 71. Tính lim
A.


1
.
3

C.

1
.
6

D.

1
.
2

Câu 72. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 73. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. −3.
D. 0.
Câu 74. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.

!
!
!
4x
1
2
2016
. Tính tổng T = f
+f
+ ··· + f
Câu 75. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T =
.
D. T = 2017.
2017
Câu 76. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. .
D. 5.

2
2
Trang 6/10 Mã đề 1


Câu 77. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
.
B. −
.
C.
.
D. − .
A.
100
100
25
16
1
Câu 78. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.

C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 79. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n2 lần.
D. n3 lần.
Câu 80. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 81. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.

C. 30.

D. 12.

Câu 82. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; 1).
log 2x

Câu 83. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x

1 − 2 ln 2x
1
A. y0 =
.
C. y0 = 3
.
.
B. y0 = 3
3
x
2x ln 10
x ln 10

D. (−∞; −1).

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

Câu 84. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.

C. .
D. a.
3
2
2
Câu 85.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).

A.
Z
C.

f (x)dx = F(x) + C ⇒

Z
B.

Z

f (t)dt = F(t) + C. D.

Z

Z

f (x)dx = F(x) +C ⇒

f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 86. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
"
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2


ab.

Câu 87. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 88. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.

B. 4 mặt.
C. 3 mặt.

D. 9 mặt.

Câu 89. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.

D. 2.

Câu 90. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).
Trang 7/10 Mã đề 1



Câu 92. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
36
6
6
18
Câu 93. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.
C. 8.
D. 20.
x+3
Câu 94. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.
q
2
Câu 95. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 96. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. .
D.
5
Câu 97. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
a 57
a 57

2a 57
A.
.
B.
.
C.
.
D.
19
17
19
Câu 98. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D.


Câu 99. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.

Câu 100. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
B. −3.
C. 3.
A. .
3


25.
[ = 60◦ , S O
a. Góc BAD

a 57.
y0 = 1 − ln x.

D. Khối bát diện đều.
1
D. − .
3


Câu 101. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
3
A.
.
B.
.
C. a 3.
D.

.
3
4
12
2x + 1
Câu 102. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
x−1
Câu 103. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
4x + 1
Câu 104. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.

C. 2.
D. 4.
a
1
Câu 105. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 2.
D. 4.
Câu 106. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. − .
2

D.

1
.
2
Trang 8/10 Mã đề 1


Câu 107. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.

C. V = S h.
3

1
D. V = S h.
2

Câu 108. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
A. un = n2 − 4n.
B. un =
n+1

!n
6
D. un =
.
5

!n
−2
C. un =
.
3

Câu 109. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z

F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 110. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 111. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 30.

D. 8.

Câu 112.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.


f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

x2 − 12x + 35
Câu 113. Tính lim
x→5
25 − 5x
2
B. −∞.
A. .
5

C. +∞.


2
D. − .
5

Câu 114. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.
Câu 115. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
Câu 116. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
D. √

.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 117. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.

Câu 118. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Trang 9/10 Mã đề 1


Câu 119. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
x+2
đồng biến trên khoảng
Câu 120. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m

(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
2

Câu 121. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C. √ .
3
e
2e
2 e

D.

1
.
e2

Câu 122. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.


C. 4.

Câu 123. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.

D. 6.

Câu 124. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
!
1
1
1
Câu 125. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)
3
A. 2.
B. 1.
C. 0.
D. .
2
Câu 126. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 127. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
Câu 128. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.

Câu 129. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
6
2
3
Câu 130. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4. A

5.
7.

6. A

C
B

8.

9.

B

D


B
C

10.
12.

11. A

D

13.

B

14.

B

15.

B

16.

B

17.

D


18. A

19.

D

20. A

21.

22.

B

23.

D

24. A

25.

D

26.

27.

D


28.

29.

B

B
C

32. A

33. A
35.

C

30.
C

31.

B

C

34.

C

36.


C

37.

B

38.

39.

B

40.

41.

B

42. A

43.

B

44. A

45.

B


46.

47.

C

48.

49.

C

50.

B
C

C
B
C

51.

B

52.

D


53.

B

54.

D

55. A

56.

57.

D

B

58.

59. A

60.

C
B

61.

B


62.

63.

B

64.

B

66.

B

65.

C

67. A

68. A
1

D


69. A

70.


71.

C

72.

73.

C

74. A

B
C

75.

B

76.

77.

B

78.

B


C

79.

D

80.

B

81.

D

82.

B

83.
85.

B

86. A
C

87.

89. A


90. A
D

92.
94. A

D

96.

91.

D

93.

D

95.

C

97.

C

99.

98. A
100. A


D

101. A

102.

D

103. A

104.

D

105.

106. A

B

107. A
C

108.
110.

D

112.


C

109.

C

111.

C

113. A

114.

D

115.

116.

D

117. A

118. A
120.

D


84.

C

B

119.

C

121.

B

122.

D

D

123.

B

124.

C

125.


B

126.

C

127.

B

129.

B

128.
130.

D
B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×