Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 10 (17)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.69 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√S .ABCD là
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp
3
3

a 3
a 2
a 2
A.
.
B.
.
C.
.
D. a3 3.
6
4
12
Câu 2. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng


biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Câu 3. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

C. 30.

D. 8.

Câu 4. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. 2.
Câu 5. Tính lim
A. +∞.

B. −1.
2n − 3
bằng
2n2 + 3n + 1
B. 1.

Z

6


3

3x + 1

C. 4.

D. 6.

C. 0.

D. −∞.

. Tính

1

f (x)dx.
0

2

Câu 6. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.

ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x

e
C. S = 135.

Câu 7. Giá√trị cực đại của hàm số y =√x3 − 3x2 − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.

D. S = 32.

D. −3 + 4 2.

Câu 8. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 9. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

1 3
x − 2x2 + 3x − 1.
3
C. (−∞; 1) và (3; +∞). D. (1; +∞).


Câu 10. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 3).

B. (1; 3).

Câu 11. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 12. Tính giới hạn lim
A. 0.

C. 1.

D. 5.
x+2
Câu 13. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.

D. 3.
Câu 14. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Trang 1/11 Mã đề 1


Câu 15. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 16. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
D. − .
A. −3.
B. 3.
C. .
3
3
Câu 17. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.


B. 3.

C. 0.

D. 2.

Câu 18. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

Câu 19. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. 12 cạnh.

D. 11 cạnh.


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 21. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
1 − 2n
n2 − 3n
A. un =
.
B. un =
.
C. un =
.

D. un =
.
5n − 3n2
(n + 1)2
5n + n2
n2
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 22. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 + ln x.

Câu 23. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.

.
4
4
8
12
log 2x
Câu 24. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3


4n2 + 1 − n + 2
Câu 25. Tính lim

bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Câu 26. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
2
4

9
Trang 2/11 Mã đề 1


Câu 27. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.

x2 + 3x + 5
Câu 28. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. .
A. 1.
B. 0.
C. − .
4
4
2
2
Câu 29. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −7.
B. −5.
C. −3.
D. Không tồn tại.
Câu 30. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
Câu 31. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 2.

D. 4.

Câu 32. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
Câu 33.
A. 2.
Câu 34.
A. 0.

C. 8.
D. 6.
1

a
, với a, b ∈ Z. Giá trị của a + b là
[2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
B. 1.
C. 4.
D. 7.
2n + 1
Tìm giới hạn lim
n+1
B. 1.
C. 3.
D. 2.

Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3

2a
3
a 3
a3 3
3
A. a 3.
B.
.
C.
.

D.
.
3
3
6
1 + 2 + ··· + n
Câu 36. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .
D. 9.
2
2

Câu 38. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
3
12
x3 − 1
Câu 39. Tính lim
x→1 x − 1
A. 0.
B. +∞.
C. −∞.
D. 3.
Trang 3/11 Mã đề 1


Câu 40. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [1; +∞).

D. [−3; 1].
2mx + 1
1
Câu 41. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Câu 42. Hàm số nào sau đây không có cực trị
x−2
1
B. y = x4 − 2x + 1.
C. y =
.
D. y = x3 − 3x.
A. y = x + .
x
2x + 1
Câu 43. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 13 năm.
Câu 44. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ

C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
B. 3.
C. 1.
D. 2.
A.
3
Câu 45.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.
B.
.

C.
.
D.
.
6
2
12
4
Câu 46. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = ln 10.
ln 10
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D. √
.

2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 49. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 16 tháng.

C. 17 tháng.
D. 15 tháng.
Câu 50. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
25
5
Câu 51. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 4/11 Mã đề 1



Câu 52. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
Câu 53. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
x+1
bằng
x→+∞ 4x + 3
1
B. .
4



C. 20.
D. 8.

2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là √3.
D. Phần thực là 2, phần ảo là 1 − 3.

Câu 54. Tính lim
A.

1
.

3

C. 3.

D. 1.

Câu 55. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 56. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. n lần.
D. 3n3 lần.
Câu 57. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. 6.

Câu 58. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.


C. −3.

D. 3.

C. 8.

D. 6.

Câu 59. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
x−3
bằng?
Câu 60. [1] Tính lim
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 61. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.

C. 2.

D. 3.


Câu 62. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 63. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 64. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

Câu 65. Tính lim
x→5

A. +∞.

C. 2.

x2 − 12x + 35
25 − 5x

2
B. − .
5


C.

2
.
5

Câu 66. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

D. −∞.
D. −1 + sin x cos x.

Câu 67. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
Trang 5/11 Mã đề 1



Câu 68. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.




Câu 69. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 70. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.

.
B.
.
C. a 2.
D. a 3.
2
3
Câu 71.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
2

2

d = 60◦ . Đường chéo
Câu 72. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






4a3 6
a3 6
2a3 6
3
.
B.
.
C. a 6.
.
D.
A.
3
3
3
mx − 4
Câu 73. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 74. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim

= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 75. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
Câu 76. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = (−2; 1).

x2 +x−2

D. 2.


C. D = R.
4
3

Câu 77. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
5
5
2
A. a 3 .

B. a 8 .
C. a 3 .

√3

D. D = R \ {1; 2}.
a2 bằng
7

D. a 3 .

Câu 78. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 3
a3 3
a3 3
a 2
A.
.
B.
.
C.
.
D.
.

12
4
6
12
n−1
Câu 79. Tính lim 2
n +2
A. 3.
B. 0.
C. 2.
D. 1.
Trang 6/11 Mã đề 1


1
Câu 80. [1] Giá trị của biểu thức log √3
bằng
10
A. −3.

B. 3.

C.

1
.
3

1
D. − .

3

log 2x
Câu 81. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
A. y0 = 3
3
2x ln 10
x ln 10
x
2x3 ln 10
1
Câu 82. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 83. [1] Đạo hàm của hàm số y = 2 x là

1
A. y0 =
.
B. y0 = 2 x . ln 2.
ln 2

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln x.

Câu 84. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .

3
Câu 85. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9
23
.
B.
.
C. − .
D.
.
A. −
100
100
16
25
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.

.
D.
.
6
4
12
12
Câu 87. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. β = a β .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
a
Câu 88. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 89. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.

D. Hình lập phương.

Câu 90. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
2
3
6
Câu 91. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.
Trang 7/11 Mã đề 1


Câu 92. Cho hình chóp S .ABCD có √

đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

2a3
4a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
un
Câu 93. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 94. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.


Câu 95. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.

C. 20.

D. 8.

C. 6.

D. 36.

Câu 96. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a 3
a
A.
.
B.
.
C.
.
D. a3 .
9
3

3
2

Câu 97. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
Câu 98. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).
Câu 99. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.
log2 240 log2 15
Câu 100. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. 4.
Câu 101.

hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
5
.
B.
.
A.
3
3

!n
5
C. − .
3

D.

2
.
e3

D. R.
D. 9.

D. −8.
!n
4
D.

.
e

Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 103.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

Z

f (x)dx = F(x) + C ⇒

f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
48
16
24
48
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 106. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
Trang 8/11 Mã đề 1



2

2

sin x
Câu 107. [3-c] Giá trị nhỏ nhất và giá
+ 2cos x √
lần lượt là
√ trị lớn nhất của hàm
√ số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.

Câu 108.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B.
.
C.
.
12
2

4

D.

3
.
4

Câu 109. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Z 1
Câu 110. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B. 0.

C.

1
.
4

D.


1
.
2

Câu 111. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 112. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.

C. 10.

D. 8.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 113. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
!

x+1
Câu 114. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B. 2017.
C.
.
D.
.
A.
2017
2018
2018
log7 16
Câu 115. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. 4.
C. −4.
D. 2.
Câu 116. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là



a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
2
6
Câu 117. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.

D. 3 mặt.

Câu 118. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (−∞; 6, 5).

D. (4; +∞).

Câu 119. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.


D. Khối 20 mặt đều.

C. Khối tứ diện đều.

[ = 60◦ , S O
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.


D. Năm cạnh.
Trang 9/11 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. Vô số.
D. 2.
Câu 122. [4] Xét hàm số f (t) =

Câu 123. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 124. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (0; 2).

D. (−∞; 0) và (2; +∞).

Câu 125. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.

C. 4 mặt.

D. 6 mặt.

1
5

Câu 126. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R \ {1}.
7n − 2n + 1
3n3 + 2n2 + 1
B. 1.
2

Câu 127. Tính lim

D. D = R.

3

7
2
.
D. - .
3
3
3
2

Câu 128. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. m ≤ 3.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 129. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.

B. e.
C. 4 − 2 ln 2.
D. 1.
A. 0.

C.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3. A

B

4.

D

6.


C

5.

C

7.

D

9.

D

8. A
10.

11. A

12.

C
B

13.

C

14. A


15.

C

16.

C

18.

C

20.

C

D

17.
19.

B

21.

C

22.


23.

C

24.

25. A

26. A

27. A

28.

29.

B
C

30.

D

31. A

D

32. A
34.


D

33.
C

35.
37.

D

36.

B

D
B

38.

39.

D

C

40.

41. A

D


42.

C

43.

C

44.

D

45.

C

46.

D

48.

D

47.
49.

D
B


50.

51.

D

52. A

53.

C

54.

55.

C

56. A

57.

B

59.

D

61. A


B

58.

D

60.

D

62. A

63.

C

64.

65.

C

66.

67.

B

D


68. A
1

D
B


69.

70. A

B

71. A

C

72.

73.

C

74. A

75.

C


76.

77.

C

78.

D

C

79.

B

80.

D

81.

B

82.

D

83.


B

84.

D

85. A
87.

89. A

B
D

90.
92.

B

C

93.
95. A
C

96.
98. A
100.

D


102.

C

104.

97.

B

99.

B

101.

B

103. A
D

105. A

106.

C

107.


108.

C

109.

110.

D

D
B

111.

B

114.
116.

D

91.

94. A

112.

C


86.

C

113. A
D

B

118. A

115.

C

117.

C

119.

B

120.

D

121.

122.


D

123. A

124.

D

125.

D

127.

D

126. A
128.

B

130.

B

129. A

2


C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×