Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt cao1 (120)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.34 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.

D. Hình lăng trụ.

x2
Câu 2. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
A. M = , m = 0.
e
e
Câu 3. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.


D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 4. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Năm cạnh.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 5. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 6. Giá√trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2

B. 3 − 4 2.
C. −3 − 4 2.
A. 3 + 4 2.
x2 − 12x + 35
Câu 7. Tính lim
x→5
25 − 5x
2
2

B. +∞.
C. .
A. − .
5
5
Câu 8. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.


D. −3 + 4 2.

D. −∞.

Câu 9. Cho hàm số y = x3 − 2x2 + x + 1.!Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 10. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0

là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
Câu 11. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 13 năm.
D. 12 năm.
Câu 12. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m ≥ 0.

D. m > 0.
Trang 1/10 Mã đề 1


Câu 13. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.
Câu 14. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.


B. 4.

C. 3.

D. 3.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 15. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 16. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 17. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un khơng có giới hạn khi n → +∞.

D. lim un = 1.
Câu 18. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
2
6
3
Z 1
6
2
3
Câu 19. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.


B. 4.

C. 6.

D. −1.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.

Câu 20. [3-1214d] Cho hàm số y =

Câu 21. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 8.

D. 12.

[ = 60◦ , S A ⊥ (ABCD).
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD

Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 23.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
Câu 24. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +

log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 25. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
Trang 2/10 Mã đề 1


Câu 26. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Khơng tồn tại.

D. −5.

Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
Câu 28. Giá trị của lim (3x2 − 2x + 1)
x→1


A. 2.

B. 1.

C. 3.

Câu 29. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e
x+1
bằng
Câu 30. Tính lim
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
2
6
Câu 31.

D. +∞.
D. 2e.

D.


[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

1
.
3
q
x+ log23 x + 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].

C. m ∈ [0; 1].

D. m ∈ [0; 2].

Câu 32. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 33. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

!2x−1
!2−x
3
3


Câu 34. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).

D. [1; +∞).

Câu 35. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng

vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
8
4
4
12
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
2
6
Câu 39. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 6
a3 15
3
A.
.

B. a 6.
C.
.
D.
.
3
3
3
Trang 3/10 Mã đề 1


Câu 40. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 41. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.

C. 10.
D. 8.
log(mx)
Câu 42. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.

D. m ≤ 0.
Câu 43. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. 7, 2.

D. −7, 2.

Câu 44. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 46. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D. {3; 3}.

Câu 47. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1

A. 0.

B. 7.

C. 9.

D. 5.

Câu 48. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.
.

C.
.
D.
.
9
9
3
9
Câu 50. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 51. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 52. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .

C. m > .
D. m ≤ .
4
4
4
4
Câu 53. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).
Câu 54. Tính lim
A. 2.

n−1
n2 + 2

B. 1.

C. 0.

D. (1; 2).

D. 3.
Trang 4/10 Mã đề 1


Câu 55. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.

D. Trục thực.
3a
, hình chiếu vng
Câu 56. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
a
2a
.
B.
.
C. .
D. .
A.
3
3
4
3
Câu 57. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.
D. Không tồn tại.
Câu 58. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
2−n
bằng
Câu 59. Giá trị của giới hạn lim
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Câu 60. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
8
5
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 61. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.

B. 1202 m.
C. 2400 m.
D. 1134 m.
Câu 62. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 63. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 64. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 65. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).

C. m , 0.
D. m = 0.
1 − xy
Câu 66. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
18 11 − 29
9 11 + 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Trang 5/10 Mã đề 1


Câu 67. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
2

Câu 68. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 7.

D. 6.

Câu 69. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 70. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.

x2 + 3x + 5
Câu 71. Tính giới hạn lim
x→−∞
4x − 1
A. 1.

B. 0.

C. 30.

D. 20.

1
1
.
D. − .
4
4
Câu 72. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
Câu 73. Hàm số y =
A. x = 3.


x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C.

C. x = 1.

D. x = 2.

Câu 74. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
5
9
A. −
.
B.
.
C. − .
D.
.
100
100
16
25
x+3
Câu 75. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vơ số.
D. 3.

Câu 76. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 78. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 79. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 6/10 Mã đề 1



(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 80. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
Câu 81. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

C. Cả hai đều sai.

D. Chỉ có (I) đúng.


B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.

Câu 82. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



2a3 3
5a3 3
4a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3

Câu 83. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2

3
3
A. V = 2a .
B. V = a 2.
.
D. 2a3 2.
C.
3
Câu 84. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
Câu 85. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
2

3
2n − 3
Câu 86. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 87. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e
e
0 0 0 0
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. √
.

C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 89. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
Trang 7/10 Mã đề 1



Câu 90. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3

πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
3
6
4x + 1
Câu 91. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 4.
C. 2.
D. −4.
Câu 92. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 93. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.

B. 1.
C. 3.

D. 2.

Câu 94. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 95. Dãy số nào có giới hạn bằng 0?!
n
−2
2
.
A. un = n − 4n.
B. un =
3

n3 − 3n
D. un =
.
n+1

!n
6
C. un =
.

5

Câu 96. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 97. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
x−2
Câu 98. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 2.
3
Câu 99. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.

!x
1
1−x
Câu 100. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.

D. 1.

D. − log2 3.

log 2x
Câu 101. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.

3
2x ln 10
2x ln 10
x ln 10
x3
Câu 102. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Trang 8/10 Mã đề 1


Câu 103. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 135.

D. S = 32.

Câu 104. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!

1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; − .
2
2
2

!
1
D. −∞; .
2

Câu 105. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

D. 9 cạnh.

C. 10 cạnh.

Câu 106. Hàm số nào sau đây không có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

Câu 107. Khối đa diện đều loại {5; 3} có số mặt

A. 12.
B. 30.

C. y =

x−2
.
2x + 1

C. 8.

D. 20.

Câu 108. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

Câu 109. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

1
D. y = x + .
x

C. y0 =

1
2 x . ln


C. {5; 3}.

x

.

D. y0 =

1
.
ln 2

D. {3; 3}.

Câu 110.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
Z
Z x
xα+1
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
C.

xα dx =
α+1
Câu 111. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Bát diện đều.
Câu 112. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. e.
x−3 x−2 x−1
x
Câu 113. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
log7 16
Câu 114. [1-c] Giá trị của biểu thức
bằng
15

log7 15 − log7 30
A. 4.
B. 2.
C. −2.
D. −4.
Z 3
x
a
a
Câu 115. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 16.
D. P = 28.
Câu 116. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
8
2

4
Câu 117.
!n Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
1
5
5
4
A.
.
B. − .
C.
.
D.
.
3
3
3
e
Trang 9/10 Mã đề 1


7n2 − 2n3 + 1
Câu 118. Tính lim 3
3n + 2n2 + 1
2
B. 0.
A. - .

3

C. 1.

D.

7
.
3

1
Câu 119. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 120. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 121. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 122. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.

C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
Câu 123. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
(1, 01)3 − 1
Câu 124.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các

mệnh đề nào sai?
Z
Z mệnh đề sau, Z
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 125. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67

.
27
Câu 126. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A.
.
B. .
C.
.
D. .
10
5
10
5
log 2x
Câu 127. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.

C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 128. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.

.
D.
.
A.
36
12
6
24
 π π
Câu 129. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. −1.
D. 1.
A. −7.

B. −4.

C. −2.

D.

Trang 10/10 Mã đề 1


Câu 130. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?

A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

B

D

4.

C
D

5.

C


6.

7.

C

8.

B

9.

C

10.

B

11.

D

12. A

13.

D

14. A


15.
17. A
19.

D

16.

B

18.
B

20.

21.

D

22. A

23.

D

24.

25.

D


26.

27.

C

28. A

29.

C

30.

31. A

B
C
D
C
C

32. A

33.

B

34.


35.

B

36. A

37.

B

38.

39.

D
D

40. A

C

41.

D

42.

C


43.

D

44.

C
C

45.

C

46.

47.

C

48.

49.

B

50.

53.

54.


C
C

60.

61. A

62. A

67.

C

58. A

59. A
B

65.

D

56. A

B

57.

63.


C

52.

51. A
55.

D

64.
D

C
C

66. A

B

68.
1

C


69.

D


70.

71.

D

72.

C

73.

B

74. A
D

75.

D

76.

C

78.

77. A
79.


C

D

80. A

81.

D

82. A

83.

D

84.

B

85.

B

86.

B

87.


B

88.

B

89.

B

90.

91.

B

92. A

93. A
95.

C

94. A
96.

B

97. A
D


99.
C

101.

D

103.
C

105.

B

98.

D

100.

D

102.

B

104.

B

C

106.

107. A

108.

B

109.

B

110.

111.

B

112.

D

114.

D

116.


D

113.
115.

D
B

117. A

118. A

119.

D

121.

122. A
D

125.
129.

120. A

C

123.
127.


C

124. A
126.

C
B
D

2

C

128.

B

130.

B



×