Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt cao1 (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.48 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá√trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2


A. 3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. −3 + 4 2.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 2. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
1
8
8
B. .
C. .
D. .
A. .


9
3
9
3

2
Câu 3. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.
Câu 4. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
2
6

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 5. [3-1214d] Cho hàm số y =
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 6. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13
.
B. 2.
C. 2 13.
D. 26.
A.
13
Câu 7. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 8. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 3.
B. 1.
C.
.
D. 2.
3
Câu 9. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4

4
4
2
2
Câu 10. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
x+3
Câu 11. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
Trang 1/10 Mã đề 1


Câu 12. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.


D. 6 mặt.

d = 30◦ , biết S BC là tam giác đều
Câu 13. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
13
26
Câu 14. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.

B. P =
.
C. P = 2i.
D. P =
.
2
2
log7 16
Câu 15. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. −2.
D. 4.
Câu 16. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3

a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
12
36
6
Câu 17. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.

Câu 18. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.

12 + 22 + · · · + n2
n3

B. 0.

Câu 19. [3-1133d] Tính lim
A. +∞.

C.

1
.
3

Câu 20. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.

D.

2
.
3

D. Hình tam giác.

Câu 21. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 22. Giá trị của lim (3x2 − 2x + 1)

x→1

A. 2.

B. +∞.

C. 1.

D. 3.

Câu 23. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 24. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03

C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Trang 2/10 Mã đề 1


Câu 25. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 11.
D. 12.
Câu 26. [1] Tính lim
A.

1
.
2

1 − n2
bằng?
2n2 + 1
B. 0.

C.


1
.
3

1
D. − .
2

Câu 27. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
2
4
8
1 + 2 + ··· + n
Câu 28. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2
Câu 29. Khối đa diện đều loại {3; 3} có số mặt

A. 5.
B. 4.

C. 3.

D. 2.

Câu 30. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. .
D. 1.
2
2
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 4 − 2 ln 2.

x2 + 3x + 5
Câu 32. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. − .

C. .
4
4

D. 1.

D. 0.

Câu 33. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
[ = 60◦ , S O
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19

17
19
Câu 35. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 3).

Câu 36. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
.
B.
.
C. a3 3.
D.
.
A.
12
3
4
Câu 37. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.

B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 38. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 30.

D. 8.
Trang 3/10 Mã đề 1


Câu 39. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
25

3
25
5
Câu 40. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. 2.
Câu 41. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 42. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
x+2
Câu 43. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?

A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 44. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Câu 45. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. −e.
D. − 2 .
A. − .
2e
e
e
Câu 46. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 47. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.

!x
1
1−x
Câu 48. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log2 3.
D. − log3 2.
Câu 49. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 12.

D. 30.

Câu 50. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 7 3.
B. 8 2.
C. 16.
D. 8 3.
Câu 51.
đề nào sau đây
Z [1233d-2] Mệnh Z

Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Trang 4/10 Mã đề 1


Z
D.

k f (x)dx = k

Z
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 52. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m = 4.

Câu 53. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.

D. 12.

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D. ln 12.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 55. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.

B. −2.
C. 1.
D. 0.
Câu 56. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3
a 3
D.
.
B.
.
C. a 3.
.
A.
3
2
2
1
Câu 57. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. − .

D. 3.
3
3
Câu 58. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể
√là
3
3
a 3
2a 6
a 3
a3 6
A.
.
B.
.
C.
.
D.
.
4
9
2
12
Câu 59. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.

B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 60. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
x2
Câu 61. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 62. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
Câu 63. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.

B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
a
1
Câu 64. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
Z 3
x
a
a
Câu 65. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.
Trang 5/10 Mã đề 1



 π
Câu 66. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
C.
D.
A. 1.
B. e .
e .
e .
2
2
2
Câu 67. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).

C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
d = 120◦ .
Câu 68. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2
Câu 69. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = R \ {1}.
D. D = (0; +∞).
Câu 70. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 25.
B. 5.
C. 5.


Câu 71. Tính lim

D.

1
.

5

2n2 − 1
3n6 + n4

2
C. 1.
D. .
3


Câu 72. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
A. 0.

B. 2.

Câu 73. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (2; +∞).

D. (0; 2).


Câu 74. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.

C. 3.

Câu 75. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
3
3

D. 2.

D. 3.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2

2a
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 77. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 76. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

7n2 − 2n3 + 1
Câu 78. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
3
3

C. 1.


D. 0.
Trang 6/10 Mã đề 1


Câu 79. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 10.

D. 12.
d = 60◦ . Đường chéo
Câu 80. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
.
B.

.
C. a 6.
D.
.
A.
3
3
3
0 0 0 0
0
Câu 81.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7
3
2
1

Câu 82. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
x+1
Câu 83. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
!
!
!
x
4
1
2
2016
Câu 84. [3] Cho hàm số f (x) = x
. Tính tổng T = f

+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017

Câu 85. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =

.
A. V =
6
6
2
3
log(mx)
Câu 86. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
q
2
Câu 87. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 88. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3

a3 3
3
.
C.
.
D.
.
A. a .
B.
6
3
2
2
Câu 89. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.
D. 7.
x
Câu 90. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. .
D. 1.
2

2
2
Câu 91. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.

Câu 92. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Trang 7/10 Mã đề 1


log 2x

Câu 93. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.

D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 94. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
C. lim f (x) = f (a).
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
 π π
3
Câu 95. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
Z 2
ln(x + 1)
Câu 96. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 1.
B. 3.
C. −3.
D. 0.
Câu 97. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].

Câu 98. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
x−3 x−2 x−1
x
Câu 99. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
Câu 100. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

3
3
3
2a
4a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x2 − 3x + 3
Câu 101. Hàm số y =
đạt cực đại tại

x−2
A. x = 0.
B. x = 2.
C. x = 3.
D. x = 1.
!2x−1
!2−x
3
3
Câu 102. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
Câu 103. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 104. Xét hai câu sau
Z
Z
Z
(I)

( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

Câu 105. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Ba mặt.

D. Cả hai câu trên sai.
D. Hai mặt.

3
2
x
Câu 106. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.

Trang 8/10 Mã đề 1



Câu 107. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9

Câu 108. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 58
3a 38

.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 109. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.

C. 12.

D. 20.

Câu 110. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 111. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
2
2
2
2
2
2
a + b2
a +b
2 a +b
a +b

Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = 3S h.
C. V = S h.
D. V = S h.
A. V = S h.
3
2

Câu 114. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 115. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 116. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

C. 2.


D. 0.

Câu 117.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B. .
C.
.
2
4
12


3
D.
.
4

Câu 118. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 119. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =

.
B.
u
=
.
n
5n + n2
n2

C. un =

n2 − 2
.
5n − 3n2

D. un =

n2 + n + 1
.
(n + 1)2
Trang 9/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.

D. xy0 = ey + 1.

Câu 120. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 121. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

9
3
9
9

Câu 123. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
2


2

sin x
Câu 124.
+ 2cos x lần lượt
√ số f (x) = 2
√ là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
8
Câu 125. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 96.
D. 81.

Câu 126. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
9
5
A.
.
B. −
.

C.
.
D. − .
100
100
25
16
Câu 127.
√ Thể tích của tứ diện đều
√cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
12
4
6
Câu 128. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (II) và (III).

Câu 129. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x
ln 2
Câu 130. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4.

5.

D

6. A
8.

7. A
9.

D


10.

11.

D

13.

14. A
16.

D
B
C

15. A
17. A

B
C

18.
20.

C

19.
D


21.

22. A
24.

C

B

23.

C

25.

B

D

26.

D

27.

B

28.

D


29.

B

31.

B

30.
32.

C
B

34. A

33.

C

35.

C

36.

B

37.


38.

B

39. A

D

40. A

41.

B

42. A

43.

B

44.

B

45. A

46.

C


47. A

48.

C

49.

50.

C

51.

52.
54.

B

C
D

53.

C
D

55.


C

56. A

57.

C
C

58.

D

59.

60.

D

61.

62.

D

63.

D

64.


D

65.

D

66.

D

67.

68.

69. A

C
1

B

B


70. A

71. A

72. A


73.
D

74.
76.

75. A

B

78. A
80.

77.

B

79.

B

81.

C

82. A
84.

D


C

83. A
B

86. A

85.

D

87.

D
D

88.

D

89.

90.

D

91.

C


93.

92. A

D

94.

C

95.

96.

C

97.

D

99.

D

101.

D

98. A

100.

B

102.

C

104. A
106.

B

108.
110.

103.

C

105.

C

107. A
D

109.

B


B

111.

112. A
114.

C

C

113. A
B

116.

115.

B

117.

D

118.

B

119. A


120.

B

121. A

D

122. A

123.

D

124. A

125.

D

126.

127.

B

128. A
130.


129.
B

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×