Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt cao1 (152)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.35 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

2x + 1
x→+∞ x + 1
B. −1.

Câu 1. Tính giới hạn lim
A. 2.

C. 1.

D.

1
.
2

Câu 2. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 3. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao


cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
D. .
A. 3.
B. 1.
C. .
2
2
Câu 4. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.

Câu 5. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).

Câu 6. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ
! của biểu thức P = "x + 2y! thuộc tập nào dưới đây?
" nhất
5
5

;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
A.
2
2
Câu 7. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4

Z 1
6
2
3
Câu 8. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 4.

Câu 9. Tìm giá trị lớn nhất của hàm
√ số y =
A. 3.
B. 2 + 3.



C. −1.

x+3+ 6√
−x
C. 2 3.

D. 6.

D. 3 2.


Câu 10. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 10.
D. 4.
Câu 11. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
A.
.
B.
.
C.
.
D.
.

48
24
24
8
Trang 1/11 Mã đề 1


 π
Câu 13. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2

1 π
3 π6
A.
e .
B. e 3 .
C. 1.
2
2


2 π4
D.
e .
2

Câu 14. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3

a
a
C.
.
D. .
A. a.
B. .
3
2
2
Câu 15. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 6.
D. 3.
Câu 16. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 17. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 68.

C. 5.
D.
.
A. 34.
17
x−3 x−2 x−1
x
Câu 18. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
1
Câu 19. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 1.
D. 2.
Câu 20. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
4
2
12
9
Câu 21. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
6
24
12
Câu 22. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
Câu 23. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.

D. 4 mặt.


ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.
D. S = 22.
1
Câu 24. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Trang 2/11 Mã đề 1


Câu 25. Tính lim
A. 0.

2n − 3
bằng
+ 3n + 1
B. −∞.

2n2


C. 1.

Câu 26. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. +∞.
D. (2; +∞).

Câu 27. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.

B. −4.

C. −7.

D.

67
.
27

!2x−1
!2−x
3
3
Câu 28. Tập các số x thỏa mãn



5
5
A. [3; +∞).
B. (−∞; 1].
C. (+∞; −∞).

D. [1; +∞).

1 − n2
bằng?
Câu 29. [1] Tính lim 2
2n + 1
1
A. .
B. 0.
2

1
D. − .
2

C.

Câu 30. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

1
.

3

C. {5; 3}.

2
Câu 31. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.

D. {4; 3}.


D. |z| =

5.

Câu 32. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 33.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 2.
C. 3.
D. 1.
Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 36. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
Câu 37. Tính lim
x→5


2
A. .
5

C. Khối 12 mặt đều.

D. Khối lập phương.

C. +∞.

2
D. − .
5

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

x2 − 12x + 35
25 − 5x
B. −∞.

Câu 38. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab

1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
2

Câu 40. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.

D. 3.
Trang 3/11 Mã đề 1


Câu 41. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.

Câu 42. Tính lim

x→+∞

A. 3.

x+1
bằng
4x + 3
1
B. .
3

C.

1
.
4

D. 1.

Câu 43. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 3.
C. a 6.

D.
.
A. 2a 6.
2
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
[ = 60◦ , S A ⊥ (ABCD).
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là



a3 2
a3 3
a3 2
3
A.
.
B. a 3.
.
D.
.
C.
12
4
6
x−1 y z+1
Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 47. Dãy số nào sau đây có giới hạn khác 0?

1
1
A. .
B. √ .
n
n

C.

n+1
.
n

Câu 48. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.

D.

sin n
.
n

D. 10 mặt.

Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



a3 3
a3 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 50. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
x2 − 3x + 3
đạt cực đại tại
Câu 51. Hàm số y =
x−2
A. x = 3.
B. x = 2.
C. x = 1.


D.

ln 2
.
2

D. x = 0.

Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 40a3 .
C.
.
D. 10a3 .
3
Trang 4/11 Mã đề 1


Câu 53. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của


√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2
2
2
a 5
a 7
a 2
11a
A.
.
B.
.
C.
.
D.
.
16
8
4
32
Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 55. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.

C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 56. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = R.
D. D = (−2; 1).
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 57. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
2

Câu 58. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 59. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.

C. 3.

D. 10.

Câu 60. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
x−1
Câu 61. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

A. 6.
B. 2.
C. 2 2.
D. 2 3.
Câu 62. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
Câu 63. Giá trị của lim (3x2 − 2x + 1)
A. +∞.


x→1

B. 2.

C. 3.
4
3

Câu 64. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
7
2
5
A. a 3 .
B. a 3 .
C. a 3 .

√3

D. 1.
a2 bằng
5

D. a 8 .

d = 30◦ , biết S BC là tam giác đều
Câu 65. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
16
9
Câu 66. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Trang 5/11 Mã đề 1


[ = 60◦ , S O
Câu 67. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S

√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
2mx + 1
1
Câu 68. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.

Câu 69. Thể tích của khối lập phương có cạnh bằng a 2

3



2
2a
A. V = 2a3 .
B. V = a3 2.
.
C. 2a3 2.
D.
3
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √


3
3

2a3 3
a
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
3

3
6
Câu 71. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Có một hoặc hai.
D. Khơng có.
8
Câu 72. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 73. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
2a3 3
a3
4a3 3
.
B.
.
C.

.
D.
.
A.
3
3
3
6
Câu 75. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1728
1637
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
2

Câu 76. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.

B. 5.
C. 6.

D. 7.

3
2
Câu 77. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

B. −3 + 4 2.
C. 3 − 4 2.
A. −3 − 4 2.


D. 3 + 4 2.

2

Câu 78. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 79. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un

B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 80. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.
Trang 6/11 Mã đề 1


Câu 81. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 14 năm.
D. 12 năm.

Câu 82. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).

D. (2; 2).

Câu 83. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 84. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 3.
C. 2e.
D. 2e + 1.
A. .
e
Câu 85. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Không thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 86. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +

√ y.



18 11 − 29
9 11 − 19
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 87. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
.
B.

.
C.
.
D. 2a2 2.
A.
24
12
24
Câu 88. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 89. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.

D. m = 0.

Câu 90. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.

D. Không tồn tại.

Câu 91. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.

C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
log2 240 log2 15
Câu 92. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
Câu 93. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 94. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. e2016 .
B. 22016 .
C. 1.
D. 0.
Trang 7/11 Mã đề 1


1
Câu 95. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
Câu 96. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
0

C. 12.
0

D. 30.

0

Câu 97. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt

2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 2.
C. 1.
D. 3.
3
Câu 98. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
Câu 99. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.

Câu 100. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).

D. d nằm trên P.
Câu 101. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
Câu 102. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
x−2 x−1
x
x+1
Câu 103. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
C. lim qn = 1 với |q| > 1.

D. lim

Câu 104. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
2a3
4a3 3
2a3 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3

Câu 105. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 106. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − 2 .
A. − .
2e
e
!x
1
1−x
Câu 107. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.

1
D. − .
e

D. − log2 3.

Câu 108. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD



3
3
3
a 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9
Trang 8/11 Mã đề 1



Câu 109. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 111. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D. {3; 5}.
2

2

Câu 112.
f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số √
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
Câu 113. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
triệu.

D. m =
triệu.
C. m =
3
3
2n + 1
Câu 114. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. 0.
C. .
D. .
2
3
2
Câu 115. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 116. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
Câu 117. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 3.
D. 2.
Câu 118. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

C. 5.

D. 3.
d = 60◦ . Đường chéo
Câu 119. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 120. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+1

c+2
c+2
Trang 9/11 Mã đề 1


Câu 121. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3

!
1
B. Hàm số nghịch biến trên khoảng −∞; .
!3
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

Câu 122. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2

3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4

2
2
2
!4x
!2−x
2
3
Câu 123. Tập các số x thỏa mãn


2
!
#
" 3 !
#
"
2
2
2
2
A. −∞; .
; +∞ .
C. −∞; .
B.
D. − ; +∞ .
5
5
3
3
Câu 124. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
tan x + m
nghịch biến trên khoảng
Câu 125. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).

Câu 126. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Câu (I) sai.

D. Khơng có câu nào

sai.
0 0 0
Câu 128. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
Câu 129.
!n Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
5
4
5
1
A.
.

B. − .
C.
.
D.
.
e
3
3
3
Câu 130. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1. A

2.

C
C

3.

C

4.

5.

C

6. A

7.

B

9.
11.

D
B


8.

B

10.

B

12.

B

13.

D

14. A

15.

D

16.

17.

D

18.


C

20.

C

C

19.
21.

D

24.

23. A

C

25. A

26. A

27. A

28.

D

29.


30.

D

31. A

32. A

B
B

D

35.

36.

D

37. A

38.

C
B

D

33.


34.

40.

D

39.

D

41.

D

42.

C

43.

C

44.

C

45.

C


47.

C

49.

C

50. A

51.

C

52. A

53.

B
B

46. A
48.

C

54.

C


55.

56.

C

57.

58.

B

59.

60.

B

61.

63.

B

64.

65. A

66.


67.

C

68.

69.

C

70.
1

D
C
D
B
C
D
C


71.

72. A

C

73. A


74. A

75. A

76.

D
D

77.

B

78.

79.

B

80.

B

81.

B

82.


B
B

83.

C

84.

85.

C

86.

87.

C

88.

89.

B

90.
D

91.


D
B

92. A
D

94.

C

93.

C

95.

B

96.

B

97.

B

98.

B


100.

B

D

99.
101.

B

104.

103. A
105.

C

102.
C

D

106. A

107.

D

108.


109.

D

110.

111.

D

112. A

113. A

C

114.

C
C

115.

D

116.

117.


D

118.

119.

D

120.

121.

D

122.

123.

D

124. A

125.

D

126.

127.


D

128. A

129.

D

130. A

2

B

B
C
B
B



×