Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 1 (921)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.19 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m > .
D. m ≥ .
A. m ≤ .
4
4
4
4
Z 3
x
a
a
Câu 2. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d


0 4+2 x+1
P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
2−n
Câu 3. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.

Câu 4. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ
" nhất
! của biểu thức P = x + 2y thuộc tập nào dưới "đây?!
5
5
B. (1; 2).
C.
D. [3; 4).
A. 2; .
;3 .
2
2
Câu 5. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.

B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 6. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3
3

a
3
a
3
a3 2
.
B. 2a2 2.
C.
.
D.
.
A.
24
24
12
[ = 60◦ , S O
Câu 7. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.


√ Khoảng cách từ O đến (S√BC) bằng

a 57
2a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
17
19
19
x−3 x−2 x−1
x
Câu 8. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).

C. (−∞; 2].
D. [2; +∞).
Câu 9. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Z 0
u (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
d = 300 .
Câu 10. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3

3a 3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Trang 1/10 Mã đề 1



x+1
bằng
4x + 3
1
1
A. 3.
B. .
C. 1.
D. .
3
4
Câu 12. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
Câu 11. Tính lim

x→+∞

2
Câu 13. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.


Câu 14. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
.
D.
.
B. a 2.
C.
4
2
Câu 15. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
.
D.
.

B. 6 3.
C.
A. 8 3.
3
3
Câu 16. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 17. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 18. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 12.
D. 8.
x2 − 12x + 35
Câu 19. Tính lim

x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
Câu 20. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+3
c+2
c+2
Câu 21. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6

2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 25 m.
D. 27 m.


2
4n + 1 − n + 2
Câu 22. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
Câu 23. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 27.
B. 3 3.
C. 9.
D. 8.
Câu 24. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là



3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Trang 2/10 Mã đề 1


Câu 25. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. 2.
C. −2.
D. − .
2

2
Câu 26.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 27. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B.
.
A. y0 =
x
10 ln x

k f (x)dx = f


B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

1
D. y0 = .
x
 π π
Câu 28. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 7.
D. 3.
C. y0 =

1
.
x ln 10

Câu 29. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (III).

a = 2 thì log6 a bằng
B. 36.
C. 108.
log2 240 log2 15

+ log2 1 bằng
Câu 31. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.

Câu 30. [1] Biết log6
A. 6.

D. (I) và (II).



D. 4.

D. 3.


0 0 0 0
0
Câu 32.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
2
3
Câu 33. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.
D. 3, 55.


Câu 34. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n

1
C. √ .
n

D.

1
.
n

Câu 35. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 36. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.

C. 32π.
D. 8π.
Câu 37. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.
Trang 3/10 Mã đề 1


x2 − 5x + 6
Câu 38. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.

C. 0.

D. 1.

Câu 39. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
C. 6.
D. 12.
2
3

7n − 2n + 1
Câu 40. Tính lim 3
3n + 2n2 + 1
7
2
B. 1.
C. 0.
D. .
A. - .
3
3
Câu 41. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
x+1
Câu 42. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
6
3
[ = 60◦ , S A ⊥ (ABCD).
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 3
a 2
.
B.
.
C.
.
D. a3 3.
A.
12
4
6
Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Cả hai câu trên sai.

D. Chỉ có (I) đúng.
Z 1
6
2
3
Câu 45. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

B. −1.

C. 4.
D. 2.
ln x p 2
1
Câu 46. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1

A. .
B. .
C. .
D. .
9
3
9
3
Câu 47. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.

.
2
4
2
Câu 49. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. 2.
Câu 50. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

C. y =

x−2
.
2x + 1

Câu 51. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.

1
D. y = x + .
x
D. 72.
Trang 4/10 Mã đề 1



2n + 1
Câu 52. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. 0.
D. .
2
3
2
Câu 53. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x−1
Câu 54. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.

C. 6.
D. 2 3.
Câu 55. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
1
Câu 56. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.

x2 + 3x + 5
Câu 57. Tính giới hạn lim
x→−∞
4x − 1

1
1
A. 0.
B. .
C. − .
D. 1.
4
4
Câu 58. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
!
1
1
1
Câu 59. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. +∞.
D. 2.
2
2
Câu 60. Phát biểu nào sau đây là sai?

1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
Câu 61. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
Câu 62. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 63. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
5a
2a
A. .
B.
.
C.
.

D.
.
9
9
9
9
Trang 5/10 Mã đề 1



Câu 64. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2

3
6
3
2
Câu 65. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 + 4 2.
C. −3 − 4 2.


D. 3 + 4 2.

Câu 66. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B.
.
C. a.
D. .
A. .
3
2
2
Câu 67. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn

hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Câu 68. [1-c] Giá trị của biểu thức
A. −4.

log7 16
log7 15 − log7

B. −2.

15
30

bằng
C. 2.

D. 4.

Câu 69. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
 π

Câu 70. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
B.
e .
C.
e .
D. 1.
A. e 3 .
2
2
2
Câu 71. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Câu 72. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (0; 1).
12 + 22 + · · · + n2
Câu 73. [3-1133d] Tính lim
n3
2
1

A. .
B. .
3
3

C. 0.

D. +∞.

Câu 74. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
1

Câu 75. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R.

Câu 76. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 77. Tính lim

x→2

A. 0.

x+2
bằng?
x
B. 2.

C. 3.

D. 1.
Trang 6/10 Mã đề 1


Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
4a3 3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.

6
3
3
3
Câu 79. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
D. −1 + 2 sin 2x.
Câu 80. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

Câu 81. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 8.
D. 20.
x−2 x−1
x
x+1
Câu 82. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
x−3
Câu 83. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
C. 1.
D. 0.
q
2
Câu 84. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Câu 85. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).


C. (−∞; 0) và (2; +∞). D. (0; 2).

Câu 86. Dãy số nào có giới hạn bằng 0?
n3 − 3n
2
.
A. un = n − 4n.
B. un =
n+1

!n
6
C. un =
.
5

!n
−2
D. un =
.
3

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.

D. xy0 = ey − 1.

Câu 87. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 88. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 89. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .

C.


−1.

−3

D. (−1)−1 .

Câu 90. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a

A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Câu 91. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 92. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 8 năm.
D. 7 năm.
Trang 7/10 Mã đề 1


Câu 93. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1

D. V = S h.
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2
Câu 94. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
Câu 95. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4

4
Câu 96. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 97. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.

12
36
6
24
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 98. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.

Câu 99. Xác định phần ảo của số phức z = ( 2 + 3i)2


A. 7.
B. −7.
C. −6 2.
D. 6 2.
Câu 100. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 101. [1] Giá trị của biểu thức 9log3 12 bằng

A. 24.
B. 4.
C. 2.
D. 144.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 102. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 103. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
2
4
3
Câu 104. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
A. P =
.

B. P =
.
C. P = 2.
D. P = 2i.
2
2
1 − 2n
Câu 105. [1] Tính lim
bằng?
3n + 1
2
1
2
A. 1.
B. .
C. .
D. − .
3
3
3
a
1
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.


Trang 8/10 Mã đề 1


Câu 107. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 108. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
un
Câu 109. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 110. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).

D. (1; −3).


Câu 111. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 112. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
d = 30◦ , biết S BC là tam giác đều
Câu 113. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26

16
13
9
Câu 114. [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 1.
D. 10.
A. 2.
B. 2.
Câu 115. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 3.
D. 2e.
A. 2e + 1.
B. .
e
Câu 116. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
5a 3
4a 3
a3 3
2a3 3
A.
.

B.
.
C.
.
D.
.
3
3
2
3
Câu 117. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = [2; 1].
2

D. D = (−2; 1).

Câu 118. Phát biểu nào sau đây là sai?
1
= 0.
n
1
C. lim un = c (un = c là hằng số).
D. lim k = 0.
n
Câu 119. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
A. 2.
B. 26.
C. 2 13.
D.
.
13
Câu 120. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
D. m , 0.
A. lim qn = 0 (|q| > 1).

B. lim

Trang 9/10 Mã đề 1


Câu 121. [3-1132d] Cho dãy số (un ) với un =

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.

A. lim un = 1.
1

C. lim un = .
D. lim un = 0.
2
Câu 122. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 123. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 124. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 125. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =

A. Nếu
Z
B. Nếu

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

f (x)dx =

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
C. Nếu

Câu 126. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.
Câu 128. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
Câu 129. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Câu (III) sai.

D. Vô nghiệm.
D. Khối 12 mặt đều.

Câu 130. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

5. A

6. A

7.
C

D

11.

B

12.

B

B


14.

15.

B

16.

17. A

18.

19. A

20.

23.

D
B
C

28. A

33.

B

D
C


27.

C

B

24.
26. A

31.

C

C

C
D

D

22.

25.
29.

D

10.


13.

21.

C

8.

D

9.

B

30.

D

32.

D

34. A

35.

D

37.


D

38. A

39.

D

40. A

41. A

42.
44.

C
B

46.
48.

C

47.

B

D

49. A

C

51.

C

53.

B

54.

D

55. A

56.

D

57.

58.

C

59.

60.


C

61.

62.

B

45.
C

50.
52.

43.

B

D
C
D
C

63.

B
B

64.


C

65.

66.

C

67.

C

69.

C

68. A
1


70.

C

72. A
74.
76.

D


73.

B

77.
81.

82.

C
B

79.

C

80. A
84.

B

75.

B

78.

71.

D

B

83.

D

D

85.

B

86.

D

87.

88.

D

89. A

C
D

90.

B


91. A

92.

B

93.

C

94.

B

95.

C

96.

B

97. A
D

98.
100. A
102.


B

D

101.

D

103.

C

105.

C

104.

99.

D

106.

D

107.

C


108.

D

109.

C

110.

B

111. A

112. A

113.

C
C

114.

C

115.

116.

C


117. A
D

120.

121.

122. A

123.

124. A

125.

126.

C

127.

128.

C

129.

130.


D

119.

118. A

D

2

C
B
C
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×