Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (241)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.59 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 2. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 2400 m.
D. 1202 m.
Câu 3. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 4. Trong các khẳng định sau, khẳng định nào sai? √
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2


A. −8.
B. 3.
C. 4.
D. 1.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 6. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.

Câu 5. [1-c] Giá trị biểu thức

Câu 7. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.


Câu 8. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.

D. 1.
D. 1.

Câu 9. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 10. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Trang 1/10 Mã đề 1


! x3 −3mx2 +m
1
Câu 11. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ (0; +∞).
D. m ∈ R.
Câu 12. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 13.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2

.
B.
.
A.
6
12


a3 2
C.
.
2

Câu 18. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R.

Câu 19. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 10.

D. 6.



a3 2
D.
.
4
q
2
Câu 14. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
log 2x
Câu 15. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.

3
x
2x ln 10
x ln 10
2x3 ln 10
Câu 16. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
.
B. y0 =
.
C. y0 = .
D.
.
A. y0 =
x ln 10
x
x
10 ln x
Câu 17. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.
D. {5; 3}.

Câu 20. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 21. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
3
x −1
Câu 22. Tính lim
x→1 x − 1
A. 0.

B. −∞.
C. +∞.
D. 3.
2n − 3
Câu 23. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 25. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.

D. 0.
Trang 2/10 Mã đề 1


Câu 26. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
!
1
1
1
+
+ ··· +
Câu 27. Tính lim
1.2 2.3
n(n + 1)
3
B. 0.
C. 1.
D. 2.
A. .
2

Câu 28. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6

a 2
.
B.
.
C.
.
D.
.
A.
6
18
6
36
Z 1
6
2
3
Câu 29. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 6.

C. 4.

D. 2.


Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
Câu 31. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 32. Hàm số nào sau đây khơng có cực trị
x−2
1
C. y = x4 − 2x + 1.
D. y =
.
A. y = x3 − 3x.
B. y = x + .
x
2x + 1
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).

Câu 34. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x−2 y+2 z−3
x y−2 z−3

C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
2

Câu 35. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.

D. 2.

Câu 36. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 3/10 Mã đề 1



Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (II) và (III).

D. (I) và (III).

Câu 37. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 38. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Năm cạnh.

Câu 39. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

D. 8.

C. 20.

Câu 40. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].

Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 41. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 42. √Xác định phần ảo của số phức z = ( 2 + 3i)2

B. −7.
C. 7.
D. 6 2.
A. −6 2.
Câu 43. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −2.

C.
.
D. −4.
27
Câu 44. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 3.
D. 5.
Câu 45. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n lần.
D. n3 lần.
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a 2
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
48
16
24
48
1 − xy
Câu 47. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 48. Bát diện đều thuộc loại

A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 49. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .

C. (−1)−1 .

D.


−1.

−3

Câu 50. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
Trang 4/10 Mã đề 1







a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
24
36
Câu 51. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
1
Câu 52. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0

y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 53.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

Câu 54. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √

chóp S .ABMN là



3
a3 3
2a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 55. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
!x
1
Câu 56. [2] Tổng các nghiệm của phương trình 31−x = 2 +


9
A. log2 3.
B. 1 − log2 3.
C. − log3 2.
D. − log2 3.

x2 + 3x + 5
Câu 57. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
Câu 58. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + .
D. T = e + 1.
A. T = 4 + .
e
e
1
Câu 59. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy

3
nhất?
A. 3.
B. 4.
C. 2.
D. 1.
1
bằng
Câu 60. [1] Giá trị của biểu thức log √3
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3


4n2 + 1 − n + 2
Câu 61. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2

Câu 62. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 63. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 5/10 Mã đề 1


!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
3

Câu 64. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .

C. e.

D. e3 .

Câu 65. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

D. 4.

C. 3.

Câu 66. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
Câu 67. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.

D. Hai mặt.

[ = 60◦ , S O
Câu 68. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


a 57
2a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
19
17
x−2 x−1
x
x+1
Câu 69. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].

D. [−3; +∞).
Câu 70. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B. 26.
C. 2 13.
D.
.
A. 2.
13
Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √

.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 72. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
.
B. 1.
C. .
D. 2.
A.
2
2
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. −2 + 2 ln 2.
D. 4 − 2 ln 2.
tan x + m
Câu 74. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).



Câu 75. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 76. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Trang 6/10 Mã đề 1


Câu 77. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.


Câu 78. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6

πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
Câu 79. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
1
Câu 80. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
2


Câu 81. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.


Câu 82.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 2 3.
B. 2 + 3.
C. 3.
Câu 83.! Dãy số nào sau đây có giới! hạn là 0?
n

n
5
1
.
B. − .
A.
3
3

!n
4
C.
.
e

D. 2 − log2 3.

D. 3 2.
!n
5
D.
.
3

Câu 84. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim

1
= 0 với k > 1.

nk

1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).

d = 60◦ . Đường chéo
Câu 85. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
.
C.
.
D.
.
B.
A. a 6.

3
3
3
Câu 86. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
Câu 87. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 88. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
A.
.
B. a .
C.
.
D.
.
12

6
24
Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.
Trang 7/10 Mã đề 1


Câu 90. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 91. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
Câu 92. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].

C. (−∞; +∞).
D. [−1; 2).
log(mx)
= 2 có nghiệm thực duy nhất
Câu 93. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 94. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C. a 2.
D.
.
A. 2a 2.
4
2
Câu 95. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D. Số cạnh của khối chóp bằng số mặt của khối chóp.
ln x p 2
1
Câu 96. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
B. .
C. .
D. .
A. .
9
3
9
3
Câu 97. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
x−3 x−2 x−1
x
Câu 98. [4-1213d] Cho hai hàm số y =
+
+
+

và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
Câu 99. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 100. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
A. .
B.
.
C.
.
D.
.
9

9
9
9
Câu 101. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3
log7 16
Câu 102. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. −4.
C. 2.
D. 4.
1

Câu 103. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R.
Trang 8/10 Mã đề 1



Câu 104. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 1.

D. 2.

Câu 105. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
3
Câu 106. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 1.
B. 2.
C. 6.

D. −1.
Câu 107. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.

D. 4 mặt.

x2 −3x+8

Câu 108. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 7.
B. 6.
C. 5.

D. 8.

Câu 109. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 110. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.

C. 20.
D. 3, 55.
 π π
3
Câu 111. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 113. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 114. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. Không tồn tại.
D. −7.




x=t




Câu 115. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .

D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Trang 9/10 Mã đề 1


x2
Câu 116. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 117. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
4x + 1
bằng?
Câu 118. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. −4.
D. 2.

Câu 119. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.

Câu 120. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.
Câu 121. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
d = 30◦ , biết S BC là tam giác đều
Câu 122. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.

C.
.
D.
.
A.
9
26
16
13
1 − 2n
Câu 123. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
Câu 124.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.


f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Câu 125. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 72.

Câu 126. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.

B. A(−4; 8).
C. A(4; −8).
D. A(4; 8).
Câu 127. Tính lim
A. 3.

n−1
n2 + 2

B. 2.

C. 1.

D. 0.

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
+ m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vô số.
Câu 128. [4] Xét hàm số f (t) =

9t

Trang 10/10 Mã đề 1



Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 130. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.

C. 8.

D. 20.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C


4. A

5. A

6.

7. A

8.
D

9.

B
C
B

10. A

11.

B

12.

D

13.

B


14.

D

15.

C

16. A

17.

C

18.

19. A

D

20. A

21.

B

22.

D


23.

B

24.

D

D

25.
27.

C

28.

29.

C

30.

31.

C

32.


33.

B

34. A

35.

B

36.

37.

C

26.

D

B
C
D
B

38.

39.

B


40. A

41.

B

42.

43.

B

44. A

45.

D

46.

47.

D

48.

49. A

50. A


51. A

52.

C
D
D
C
D

53.

B

54.

55.

B

56.

57.

B

58.

B


60.

B

D

59.

62.

61. A
63.
65.

B

B
D

D

64. A
D

66.

67. A

68. A

1

D


C

69.
71.

B

73. A
D

75.
79.

D

72.

D

74.

D

76. A


C

77.

70.

78. A

B

80.
D

81.

84. A

85. A

86.
D
D

C

92.

C

98. A


99.

D

100.

B

102.

103.

C

104.

105.

C

106.

107.

B
C

110. A


111.

C

112.

113. A
D

117.

D
C

D
C

116. A
118. A

C

119. A

120. A
B

123.

C

B

127.
129.

B

114.

115.

125.

C

108. A

109.

121.

D

96. A

B

97. A
101.


90.
94.

93. A
95.

C

88. A

89. A
91.

D

82.

83. A
87.

B

D
C

2

122.

D


124.

D

126.

D

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×