Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (242)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.16 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 2. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2
2
Câu 3. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 =


.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
!
!
!
4x
1
2
2016
Câu 4. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 2017.
B. T = 1008.
C. T =
2017
Câu 5. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.

B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
x+3
Câu 6. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vơ số.
C. 2.
D. 1.
Câu 7. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.

C. 12 cạnh.

D. 10 cạnh.

Câu 8. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.

2

Câu 9. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.

B. a3 3.
C.
.
D.
.
2
2
4
Câu 11. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
log7 16
Câu 12. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. 2.
C. −4.
D. −2.
2
3
7n − 2n + 1
Câu 13. Tính lim 3
3n + 2n2 + 1
7
2
A. .

B. 0.
C. - .
D. 1.
3
3
Trang 1/10 Mã đề 1


Câu 14. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 15. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1637
1728
A.
.
B.
.
C.
.
D.
.
4913

68
4913
4913
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 16. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9
Câu 17. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.

C. V = 6.
D. V = 3.
Câu 18. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 19. [1] Đạo hàm của làm số y = log x là
1
1
.
B.
.
A. y0 =
x ln 10
10 ln x
Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.

C. y0 =

ln 10
.
x

C. 9.

1

D. y0 = .
x
D. 7.

Câu 21. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

Câu 22.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0

B.
−1.
A. (− 2) .

C. 0−1 .

D. (−1)−1 .

ln2 x
m
Câu 23. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
C. S = 135.
D. S = 32.
Câu 24. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.

C. 10.

D. 6.

Câu 25. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.

C. A(4; −8).
D. A(4; 8).
Câu 26. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.
Câu 27. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −8.
log 2x

Câu 28. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
3
2x ln 10
x ln 10
x3

D. Tứ diện đều.
D. x = −5.


D. y0 =

2x3

1
.
ln 10

Trang 2/10 Mã đề 1


[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S


a 57
2a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
19
17

19
Câu 30. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 31. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.

D. m = 0.

Câu 32. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.


D. |z| = 2 5.

2

Câu 33. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.

n
n

n+1
.
n

1
D. √ .
n
q
2
Câu 34. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
C.

Câu 35. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 36. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.

B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
x−3
bằng?
Câu 37. [1] Tính lim
x→3 x + 3
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − 2 .
D. − .
A. −e.
B. − .
e
e
2e
2x + 1
Câu 39. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. −1.
D. 1.

2
Câu 40. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 8 m.
D. 24 m.
9x
Câu 41. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
1
Câu 42. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 43. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

A. 1587 m.
B. 27 m.
C. 25 m.
D. 387 m.
Trang 3/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. −8.

Câu 44. [1-c] Giá trị biểu thức
A. 1.

Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 6.

D. 4.
D. 10.

[ = 60◦ , S A ⊥ (ABCD).
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là

3
3

a 2
a 2
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
12
4
6
Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

C. 1.


D. 2.

Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
1
Câu 49. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. .
C. −∞.
D. − .
5

5
Câu 51. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

Câu 50. Tính lim

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 52. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Trang 4/10 Mã đề 1



Câu 53. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 54.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
x+1

Câu 55. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
C.
6
3
Câu 56. [4-c] Xét các số thực dương x, y thỏa mãn 2 x
P = (2x2 + y)(2y2 + x) + 9xy là

1
.
D. 1.
2
+ 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

27
.
2
Câu 57. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=

đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2

3
−1
2
2
2
Câu 58. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
A. 27.

x→a

B. 12.

x→b

C. 18.

x→a

D.

x→b


Câu 59. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 60. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

C. 12.

D. 6.

Câu 61. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = log √2 x.
C. y = log π4 x.

D. y = loga x trong đó a =


3 − 2.

Câu 62. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 10 năm.

D. 9 năm.
Câu 63. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 64. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

x2 + 3x + 5
Câu 65. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .
4

C. D = R.

D. D = (0; +∞).

C. 1.

1
D. − .
4
Trang 5/10 Mã đề 1



d = 120◦ .
Câu 66. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 2a.
D. 4a.
A.
2
Câu 67. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 68. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
Câu 69. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.

d = 30◦ , biết S BC là tam giác đều
Câu 70. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
16
13
Câu 71. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
C 20 .(3)30

B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 72. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
4
2
Câu 73. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 74. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1134 m.
D. 1202 m.

Câu 75. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
A. m > − .
4
4
x+2
đồng biến trên khoảng
Câu 76. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 77. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2

D. V = 3S h.
Trang 6/10 Mã đề 1



2n − 3
Câu 78. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.

D. +∞.

C. −∞.

Câu 79. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 80. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 5
11a

a2 2
a 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
x2 − 9
Câu 81. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 3.
D. −3.
Câu 82.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
4
A.
.
B.
.

3
e

!n
1
C.
.
3

!n
5
D. − .
3

Câu 83. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .

2
6
3
Câu 84. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 7 3.
B. 8 2.
C. 8 3.
D. 16.
Câu 85. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. Không tồn tại.
D. −3.
1 + 2 + ··· + n
Câu 86. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
Câu 87. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối lập phương.

D. Khối tứ diện đều.
1

Câu 88. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = R.
D. D = (1; +∞).
!
5 − 12x
Câu 89. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 90. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 91. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 30.

D. 12.
sin2 x


Câu 92.
số f (x) = 2
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
B. 2 và 2 2.
C. 2 2 và 3.
A. 2 và 3.

cos2 x

+2

lần lượt là
D. 2 và 3.

Câu 93. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Trang 7/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 94. Tập các số x thỏa mãn



5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).
Câu 95. Tính lim
A. 2.

n−1
n2 + 2

B. 1.

Câu 96. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

D. (−∞; 1].

C. 0.

D. 3.

C. 4.

D. 3.

Câu 97. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?

A. 12.
B. 4.
C. 10.
D. 11.
Câu 98. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 99. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 100. Tính lim
x→1

A. 0.


x3 − 1
x−1

B. 3.

C. −∞.

D. +∞.

Câu 101. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.

Câu 102. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 103. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.

B.
.
C. a 2.
D.
.
4
2
Câu 104. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 105. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 106. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

Câu 107. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.


D. 6.
Trang 8/10 Mã đề 1


Câu 108. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 40a .
B. 10a .
C. 20a .
D.
.
3
2
Câu 110. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.
D. 8.
Câu 111. Khối đa diện đều loại {4; 3} có số cạnh

A. 30.
B. 12.

C. 10.

D. 20.

Câu 112. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 113. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m ≤ .
D. m < .
A. m > .
4
4
4
4
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 114. [3-12217d] Cho hàm số y = ln

x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a
a3 2
a3 2
A.
.
B.
.
6
4
Câu 116. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.


a3 2
C.
.
12


a3 2

D.
.
2

C. y0 = 1 + ln x.
!x
1
1−x

Câu 117. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log3 2.
B. − log2 3.
C. 1 − log2 3.

D. y0 = ln x − 1.

D. log2 3.

Câu 118.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).

Câu 119. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
A.
.
B.
.
C. −
.
D. − .
100
25
100
16
Câu 120. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 121.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.

Z


!0

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Trang 9/10 Mã đề 1


Câu 122. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 123. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.

C. 20.

D. 8.
! x3 −3mx2 +m

1
nghịch biến trên
Câu 124. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
Câu 125. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
Câu 126. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.
D. 6 mặt.
x−2
Câu 127. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. − .
D. −3.

3
Câu 128. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Bốn cạnh.
A. lim un = c (Với un = c là hằng số).

Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 130. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.


C

2.

B

4.

C
B

5.

D

6. A

7.

D

8.

9.

D

10. A

11.


D

12.

C

B

13.

C

14.

C

15.

C

16.

C
D

17. A

18.


19. A

20.

C

22.

C

21.

B

23.

D

24.

25.

D

26.

27.

28.


C
D

29.
C

32.

33.

C

34. A

B

36.

B
C
B
B

38.

37. A
39.

C


30.

31.
35.

B

40.

B

41.

D

D
B

42.

D

43.

B

44.

C


45.

B

46.

C

47.

B

48.

C

49.

50.

C

51.

D

B

52. A


53. A

54.

55. A

56.

57. A

58. A

59. A

60.

D

61. A

62.

D

63.

D

64.


65.

D

66. A

67.

68.

B
1

D
C

C
D


71.

70.

C

69.
B

72.

D

73.

74.

75. A

76.

77. A

78. A

79. A

80. A

81.
83. A
87.

C
B

89. A
D

91.
93. A


C

C
D

86.

D

88.

D

90.

C

92.

C
B

96.

C

97. A

C


98. A

99.

D

100.

101.

D

102. A

103.

D

104.

105.

D

106.

107.

D


108.

109.
111.

B

84.

94.

95.

C

82.

B

85.

D

C

B
B
D
C


110. A
D

112.

B

113.

C

114.

C

115.

C

116.

C

117.

118.

B


119.

C

120.

121. A
123.
125.

D

122.

C
B

124.

B

D

126. A

C

127. A

128.


129. A

130.

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×