Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (654)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.6 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 1. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 2. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.

D. m > 1.

Câu 3. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.



D. x = −2.

Câu 4. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
.
D. 1.
A. 3.
B. 2.
C.
3
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√ cách từ A đến cạnh 3S√C là a. Thể tích khối chóp
√S .ABCD là
3
3

a 2
a 3
a 2

A.
.
B.
.
C.
.
D. a3 3.
12
6
4
Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
3
2
6
Câu 7. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.

B. m = −2.
C. m = −1.

D. m = −3.
3a
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là √
trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a 2
a
2a
A. .
B.
.
C. .
D.
.
4
3
3
3
Câu 9. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 24.

D. 20.
Câu 10. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

C. D = R \ {1}.

D. D = R.

2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

Câu 12. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.

C. a 2.
D.
.
4
2
Trang 1/10 Mã đề 1


Câu 13. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 14. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Một mặt.

Câu 15. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (−∞; 1).
cos n + sin n
Câu 16. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
3


2

D. (0; 2).

D. −∞.

Câu 17. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
x

x

x

Câu 18. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 19. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
9
1
2
B. .
C.
.
D.

.
A. .
5
5
10
10
Câu 20. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
C. 8.
D. 12.
Câu 21. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 22. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 23. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un


!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn

x2 − 9
Câu 24. Tính lim
x→3 x − 3
A. 6.
B. 3.

C. +∞.

D. −3.

Câu 25. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.

C. 6510 m.
D. 2400 m.
Câu 26. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.

C. 4.

D. 2.

Câu 27. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].

Câu 28. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

D. {4; 3}.

C. {3; 3}.

Trang 2/10 Mã đề 1


Câu 29. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1

A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 30. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 31. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [−3; 1].
D. [1; +∞).
!
5 − 12x
Câu 32. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.

C. Vô nghiệm.
D. 3.
Câu 33. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
[ = 60◦ , S O
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Câu 35. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.

C. n2 lần.
D. n3 lần.
!
x+1
Câu 36. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
B.
.
C. 2017.
D.
.
A.
2018
2018
2017
log(mx)
Câu 37. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
x+1
Câu 38. Tính lim

bằng
x→−∞ 6x − 2
1
1
1
B. 1.
C. .
D. .
A. .
2
6
3
Câu 39. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 40. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
C. lim un = c (un = c là hằng số).
Câu 41. [1] Đạo hàm của làm số y = log x là
1
ln 10
A.
.
B. y0 =
.
10 ln x
x


1
= 0.
nk
1
D. lim = 0.
n

B. lim

1
C. y0 = .
x

D. y0 =

1
.
x ln 10


Câu 42. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3
a3 3
a3 3
3
A. a 3.

B.
.
C.
.
D.
.
4
12
3
Trang 3/10 Mã đề 1


Câu 43. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 45. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

C. 4.

D. 8.

!x

1

9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. − log3 2.
1
Câu 47. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 48. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
.
D. V = 2a3 .
B. 2a3 2.
C.
A. V = a3 2.
3
Câu 49. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.

C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
1
Câu 50. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
Câu 46. [2] Tổng các nghiệm của phương trình 31−x = 2 +

Câu 51. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
√3
Câu 52. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. .
D. 3.
3

3
1
Câu 53. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
3

Câu 54. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .

D. e.

Câu 55. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 56. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =

f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.
Trang 4/10 Mã đề 1


a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 2.
D. 1.

Câu 57. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 4.

B. 7.

Câu 58. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.


B. −2.

Câu 59.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

C. −4.
Z

D.

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).

67
.
27

Z

f (t)dt = F(t) + C.




x=t




Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2

2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 61. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình lập phương.

D. Hình chóp.

Câu 62. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. 4.
C. .
D. .
A. .
4
8
2
log 2x
Câu 63. [1229d] Đạo hàm của hàm số y =


x2
1 − 4 ln 2x
1 − 2 log 2x
1
1 − 2 ln 2x
.
B. y0 =
.
C. y0 =
.
A. y0 = 3
.
D. y0 = 3
3
3
2x ln 10
2x ln 10
x
x ln 10
1
Câu 64. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. 3.
C. .
D. −3.
3

3
Câu 65. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
B. m = ± 3.
C. m = ±3.
D. m = ±1.
A. m = ± 2.
Câu 66. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Câu 67. Khối đa diện đều loại {4; 3} có số mặt

A. 6.
B. 8.

C. 10.

D. 12.

Câu 68. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B.
.
C. 8 3.
D. 6 3.
3
3
Trang 5/10 Mã đề 1


Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1

A. − .
B. .
C. 2.
D. −2.
2
2
Câu 70. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B. 2 13.
C. 26.
D.
.
13
Câu 71. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
36
12


Câu 72. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x



A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
!4x
!2−x
2
3
Câu 73. Tập các số x thỏa mãn


3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5

d = 60◦ . Đường chéo
Câu 74. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 75. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.

.
B. 5.
C. 7.
D. .
2
2
3
2
2
Câu 76. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m < 0.
D. m = 0.
2n + 1
Câu 77. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
D. 3.
Câu 78. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
4

4
Z 2
ln(x + 1)
Câu 79. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. 3.
D. −3.
x−2
Câu 80. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
D. −3.
3
Câu 81. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (−∞; 2).
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).

Trang 6/10 Mã đề 1


Câu 83. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.

D. {5; 3}.

Câu 84. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
C.
.
B. a3 3.

.
D.
.
A.
2
2
4
Câu 86. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
Câu 87. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B.
.
C. a 3.
D. a 2.
A.
2
3
Câu 88. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 89. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. 3.

D. +∞.

Câu 90. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.

C. Câu (II) sai.

D. Câu (I) sai.

Câu 91.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x

A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.
0dx = C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.

.
D.
.
48
24
16
48
Câu 93. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
1
Câu 94. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Trang 7/10 Mã đề 1


Câu 95. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.

C. −
.
D.
.
16
100
100
25
x+2
bằng?
Câu 96. Tính lim
x→2
x
A. 1.
B. 2.
C. 3.
D. 0.
Câu 97. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.

B.
.
C.
.
D.
.
24
48
8
24
Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 10 mặt.
D. 6 mặt.
2x + 1
Câu 99. Tính giới hạn lim
x→+∞ x + 1
1
C. 1.
D. 2.
A. −1.
B. .
2
Câu 100. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .

D. −e.
A. − .
e
2e
e
Câu 101. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 102. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.

C. 20.

Câu 103. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; − .
C.
; +∞ .
A. −∞; .
2
2
2


D. 12.
!
1
D. − ; +∞ .
2

Câu 104. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
Câu 105. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 2.
D. 3.
p
ln x
1
Câu 106. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .

D. .
3
9
9
3
Câu 107. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 108. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.

C. 10.

D. 6.

d = 120◦ .
Câu 109. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 2a.
D. 4a.
2
Trang 8/10 Mã đề 1



Câu 110. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Câu 111. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).
3

2

D. (1; −3).

Câu 112. Phát biểu nào sau đây là sai?
1

B. lim √ = 0.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
0 0
0 0 0
Câu 113. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
A. lim un = c (Với un = c là hằng số).

Câu 114. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 115. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 116. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 62.
B. 64.
C. 63.
D. Vơ số.
Câu 117. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 118. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C. 27.
D.
.
2
Câu 119. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.

D. Vô nghiệm.
Câu 120. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 2.

D. 4.

x2 +2x

Câu 121. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. 6.
B. −5.
C. 5.

D. −6.

Câu 122. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Trang 9/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng

log3,75 2 log60 2
B. 4.
C. 1.

Câu 123. [1-c] Giá trị biểu thức
A. −8.

D. 3.

6
. Tính
Câu 124. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0

A. 6.

B. 2.

C. 4.

D. −1.

Câu 125. Dãy số nào có giới hạn bằng 0?
!n
−2

2
A. un = n − 4n.
B. un =
.
3

n3 − 3n
C. un =
.
n+1
!
1
1
1
Câu 126. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. 2.
B. +∞.
C. .
2
2n − 3
Câu 127. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. +∞.


!n
6
D. un =
.
5

D.

5
.
2

D. 1.

Câu 128. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu

f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 129. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 130. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.

B. f 0 (0) = ln 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 10.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3. A
5.
7.

C

9. A
D
C

13.
15.

D

17. A
C

D

10.


D

12.

D

14.

C

16.

C

B

24. A

C

27.

26. A
D

28.

C

30.


29. A
C

31.

D

32. A
D

34.

B

35.

D

36. A

37. A

38.

C

40. A

B


41.
43.

C

8.

22.
D

25.

39.

B

20. A

B

23.

33.

4.

18. A

19.

21.

B

6.

B

11.

2.

D
B

42.

D

44.

D

45.

D

46. A

47.


D

48.

49.

D

50.

51. A

B
D

52.

C

53.

B

54. A

55.

B


56.

57.

B

58.

B

60.

B

59.
61.
63.

C

D

62. A

B
D

64. A

65. A


66.

67. A

68.
1

C
D


69.

D

70.

71.

D

72.

73. A
D

76.

B

D

80. A

C

84.

85. A

86. A

87. A

88.

89.

D

82.

B

83.

B

78. A


79.
81.

C

74. A

75.
77.

D

B
C

90. A

B

D

91. A

92.

93. A

94.

B


96.

B

95.

C

97.

D

98.

99.

D

100.

103.

D

105. A
107.

D


104.

B

106.

B

108.

C

109. A

D

110. A

111.

B

112.

113.

B

114.


115.

B

116. A

117.

D

119.

118.

C
B
B

120.

C

D

122. A

B

123. A


124.

125.

B

126. A

127.

B

128.

129.

B

102.

101. A

121.

D

C

130.


2

C
D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×