TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18
9
log(mx)
Câu 2. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 3. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
3
3
3
√
a
a
a
3
3
2
A. 2a2 2.
B.
.
C.
.
D.
.
12
24
24
Câu 4. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 0.
C. 9.
D. 5.
Câu 5. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
!
1
1
1
+
+ ··· +
Câu 6. Tính lim
1.2 2.3
n(n + 1)
A. 1.
B. 0.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
C. 2.
D.
3
.
2
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 7. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
7n2 − 2n3 + 1
Câu 8. Tính lim 3
3n + 2n2 + 1
A. 1.
B. 0.
2
C. - .
3
Câu 9. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.
D.
7
.
3
D. Hình lăng trụ.
8
Câu 10. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Câu 11. Phát biểu nào sau đây là sai?
1
= 0.
nk
1
C. lim un = c (un = c là hằng số).
D. lim = 0.
n
Câu 12. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
A. lim qn = 0 (|q| > 1).
B. lim
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 0.
C. 2.
D. 1.
Trang 1/10 Mã đề 1
Câu 13. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
D. Bốn mặt.
Câu 14. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
D. (1; 2).
q
2
Câu 15. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 16. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 3.
D. 2.
Câu 17. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
Câu 18. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 19. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 20. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
2
3
5
Câu 21. Tính lim
n+3
A. 1.
B. 3.
C. 0.
D. 2.
Câu 22. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
x
9
Câu 23. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 24. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
√
Câu 25. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
4
12
Câu 26. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 2/10 Mã đề 1
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 28. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 29. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
D. 30.
√
Câu 30. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
Câu 31. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 32. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
mx − 4
Câu 33. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 45.
C. 26.
D. 67.
√
Câu 34. √
Thể tích của khối lập phương có cạnh bằng a 2
3
√
√
2a 2
A.
.
B. 2a3 2.
C. V = 2a3 .
D. V = a3 2.
3
Câu 35. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
√
√
Câu 36.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x
√
B. 3.
C. 2 3.
D. 2 + 3.
A. 3 2.
Câu 37. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
D. .
A. −2.
B. 2.
C. − .
2
2
Câu 38. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
log7 16
Câu 39. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −2.
C. −4.
D. 4.
Câu 40. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 3.
C. 2.
D. 5.
Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
24
48
1
ln x p 2
Câu 42. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
9
3
3
9
Trang 3/10 Mã đề 1
Câu 43. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 1.
C. 2.
D. 3.
Câu 44. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
x = 1 + 3t
Câu 45. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t
A.
.
C.
y = −10 + 11t . B.
y=1+t
y = −10 + 11t . D.
y = 1 + 4t .
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
Câu 46. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 12.
D. 8.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 47. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 48. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Câu 49. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 50. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. e2016 .
D. 0.
Câu 51. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
C. 4.
D. 3.
d = 120◦ .
Câu 52. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2
Câu 53. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
1
Câu 54. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.
C. −3.
D. − .
3
3
!
x+1
Câu 55. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
Trang 4/10 Mã đề 1
A.
2016
.
2017
B.
4035
.
2018
C.
2017
.
2018
D. 2017.
2
Câu 56. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 8.
D. 6.
Câu 57. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 58. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.
D. 9 mặt.
1
5
Câu 59. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = R.
Câu 60. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
e
e
Câu 61. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4
4
2mx + 1
1
Câu 62. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
Câu 63. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 64. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.
D. 0.
Câu 65. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 40a3 .
A. 20a3 .
B.
3
Câu 67. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 68. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
2n − 3
Câu 69. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Trang 5/10 Mã đề 1
Câu 70. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R.
2
D. D = R \ {1; 2}.
Câu 71. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .
a
Câu 72.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4
√
a3 2
C.
.
2
√
a3 2
D.
.
12
Câu 73.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. 0 .
C. (−1)−1 .
√
D. (− 2)0 .
1
Câu 74. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = −3.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 75. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 76. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 77. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).
Câu 78. [4-1212d] Cho hai hàm số y =
1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 79. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).
Câu 80. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
A. .
B.
.
C. .
D.
.
5
10
5
10
a
1
, với a, b ∈ Z. Giá trị của a + b là
Câu 81. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
Z 1
6
2
3
Câu 82. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.
B. 4.
C. 2.
√
Câu 83. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. .
C. −3.
3
D. 6.
1
D. − .
3
Trang 6/10 Mã đề 1
Câu 84. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
5a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 85. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Câu 86. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 87. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 3.
C. .
D. 1.
A. .
2
2
Câu 88. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 89. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
x2
Câu 90. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = .
D. M = e, m = 1.
A. M = e, m = 0.
B. M = , m = 0.
e
e
Câu 91. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −7.
D. −4.
27
Câu 92. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
4
2
2
Câu 93. Giá trị của lim(2x − 3x + 1) là
x→1
A. 2.
B. 1.
C. +∞.
D. 0.
Câu 94. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
Z 2
ln(x + 1)
Câu 95. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
!x
1
1−x
Câu 96. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. Khối lập phương.
D. 3.
D. − log3 2.
d = 60◦ . Đường chéo
Câu 97. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
√
2a3 6
4a
6
a
6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 98. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
Trang 7/10 Mã đề 1
Câu 99. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
√
4a3
2a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 100. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m
√
√
C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
x=t
Câu 101. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 102. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C.
.
2
2
Câu 103. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.
D. 1.
D. m = 0.
x2 −4x+5
Câu 104. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 2.
B. 4.
C. 3.
D. 5.
Câu 105. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
a2 5
a2 2
11a2
a2 7
A.
.
B.
.
C.
.
D.
.
16
4
32
8
Câu 106. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
√
Câu 107. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 108. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
ln 10
D. f 0 (0) = 1.
Câu 109. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
Câu 110. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Trang 8/10 Mã đề 1
Câu 111. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 10.
D. 3.
Câu 112. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 113. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
Câu 114. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu
f (x)dx =
Câu 115. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 116. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
Câu 117. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 118. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a =
loga 2
log2 a
Câu 119. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. −∞.
C. 3.
D. +∞.
Câu 120. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 121. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 122. Tính lim
x→−∞
A.
1
.
3
x+1
bằng
6x − 2
1
B. .
6
C. 1.
D.
1
.
2
Trang 9/10 Mã đề 1
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 124. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. .
C. 25.
D. 5.
5
Câu 125. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 126. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.
D. 1.
√
Câu 127. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
3
2
x
Câu 128. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±1.
C. m = ±3.
D. m = ± 2.
A. m = ± 3.
Câu 129. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
4
2
12
Câu 130. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A. 1.
B. 3.
C. 2.
D.
.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
3.
2. A
4.
5. A
C
6. A
C
9. A
B
11. A
C
12.
14.
B
16. A
13.
D
15.
D
17.
B
B
18.
D
19.
20.
D
21.
22.
25. A
26. A
27.
28.
C
D
33. A
35.
B
36. A
B
39.
C
43.
C
45. A
B
46.
47.
C
48. A
B
49. A
50.
D
51.
52.
D
53.
54.
D
55.
B
58.
57.
D
C
B
C
B
59. A
61. A
B
62.
D
63.
64.
D
65.
66. A
68.
C
41. A
42. A
60.
B
37. A
40.
56.
D
31. A
32.
44.
D
29. A
30. A
38.
C
23.
B
24. A
34.
C
7.
8.
10.
D
67.
D
69.
1
C
D
C
D
70.
71.
C
D
72.
73.
74. A
76.
78.
D
B
80.
82.
D
B
C
B
75.
C
77.
C
79.
B
81.
B
83.
B
84. A
85.
86. A
87.
C
89.
C
88.
C
90. A
92.
91. A
D
95. A
96. A
97.
98.
C
101.
102. A
103. A
108.
C
B
B
109.
B
111.
112.
D
113.
114. A
B
120.
C
C
117.
C
119.
C
121. A
B
124.
123.
C
125. A
C
B
128.
130.
D
115. A
118. A
126.
D
107.
D
122.
C
105.
B
110.
116.
B
99. A
100. A
106.
D
93.
B
94.
104.
D
D
C
2
127.
D
129.
D