Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (925)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.24 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.

C. +∞.

B. −∞.

un
bằng
vn

D. 1.

Câu 2. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a 38
3a
3a 58
a 38


.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 3. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một môn nằm cạnh nhau là
1
1
2
9
A.
.
B. .
C. .
D.
.
10
5
5
10
Câu 4. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.

B. 8.
C. 12.
D. 6.
Câu 5. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
2

Câu 6. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.

D. 5.

Câu 7. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
B.
.
C.
.
A. .
4

12
4


3
D.
.
2




x=t




Câu 8. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .

4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 9. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 10 năm.
D. 11 năm.
!4x
!2−x
2
3
Câu 10. Tập các số x thỏa mãn


3 # 2

"
!
#
"
!
2
2
2
2
A. − ; +∞ .
C. −∞; .
D.
B. −∞; .
; +∞ .
3
3
5
5
! x3 −3mx2 +m
1
Câu 11. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
Trang 1/10 Mã đề 1


B. m = 0.

A. m ∈ R.


C. m ∈ (0; +∞).

D. m , 0.

1
Câu 12. [1] Giá trị của biểu thức log √3
bằng
10
A. −3.

B. 3.

Câu 13. [2] Tổng các nghiệm của phương trình 3
A. 1 − log2 3.

B. log2 3.

C.
1−x

1
.
3

!x
1
=2+

9

C. − log3 2.

1
D. − .
3

D. − log2 3.

Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 2
a 3
.
B. a3 3.
C.
.
D.
.
A.
4
2
2

Câu 15. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
Câu 16. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
2
B. .
5

C. 12 cạnh.

D. 10 cạnh.

C. +∞.

2
D. − .
5

Câu 17. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).


Câu 18. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
Câu 19. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √

.
B. √
.
C. 2
.
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2


4n2 + 1 − n + 2
Câu 20. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.
C. 2.
D. .
2
Câu 21. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 22. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?

A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 24. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.
Trang 2/10 Mã đề 1


a
1
Câu 25. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 2.
D. 4.
Câu 26. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4
Câu 27. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 28. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 29. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e
Câu 30.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.

Z
C.

1
dx = ln |x| + C, C là hằng số.
x

B.
Z
D.

D. 3.

dx = x + C, C là hằng số.
xα dx =

xα+1
+ C, C là hằng số.
α+1

Câu 31. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√mặt phẳng (AIC) có diện tích
√ hình chóp S .ABCD với

a2 7
a2 2

a2 5
11a2
A.
.
B.
.
C.
.
D.
.
8
4
16
32
Câu 32. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 33. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 17 tháng.
D. 15 tháng.
!
1
1

1
Câu 34. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
B. .
C. 2.
D. +∞.
A. .
2
2
Câu 35. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Hai cạnh.
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.

.
D.
.
12
12
6
4
Câu 37. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 38. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
Trang 3/10 Mã đề 1


(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 2.

D. 4.

Câu 39. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
!2x−1
!2−x
3
3
Câu 40. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).

D. Chỉ có (II) đúng.

D. (−∞; 1].

Câu 41. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
"
!
!
" đây?
5
5
D.

;3 .
A. (1; 2).
B. [3; 4).
C. 2; .
2
2


ab.

Câu 42. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 43. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2 13.
B. 2.
C. 26.
D.
.
13
Câu 44. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.

B. {5; 2}.
C. {2}.
D. {5}.
Câu 45. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.

C. 5.

D. 0.

Câu 46. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vơ nghiệm.
Câu 47. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. 2a 6.
C.
.
D. a 3.
2

2
Câu 48. Giá trị của lim (3x − 2x + 1)
x→1
A. 2.
B. 3.
C. 1.
D. +∞.
Câu 49. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Câu 50. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.
D. 0.
Trang 4/10 Mã đề 1


Câu 51. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng

5
7
A. .
B. 6.
C. .
D. 9.
2
2
Câu 52. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).
D. (1; −3).
Câu 53. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
√3
4
Câu 54. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .

Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
4a 3
a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
x−1 y z+1
Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2

1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 57. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
Câu 58. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
Câu 59. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

1

= 0.
nk
D. lim un = c (un = c là hằng số).

B. lim

Câu 60. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Câu 61. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
[ = 60◦ , S A ⊥ (ABCD).

Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
12
6
4
Z 1
Câu 63. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
4

Câu 64. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
A. 0.

B.

1
.
2

C. 1.

D.

C. y0 = 1 + ln x.

D. y0 = 1 − ln x.
Trang 5/10 Mã đề 1


Câu 65. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 16 m.
D. 12 m.
!
!
!

x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 66. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
Câu 67. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
B. 1.
C. .
D.
.
A. .
2

2
2
Câu 68. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
2x + 1
Câu 69. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. 2.
D. −1.
2
d = 60◦ . Đường chéo
Câu 70. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

2a3 6
a3 6
4a
6

A.
.
B.
.
C. a3 6.
.
D.
3
3
3
[ = 60◦ , S O
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
!

x+1
Câu 72. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 73. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 74. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
 π π
3
Câu 75. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
A. 3.
B. 7.
C. −1.
D. 1.
Câu 76. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình tam giác.

D. Hình lăng trụ.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 1.
C. .
D. 2.
2

Câu 77. [2-c] Cho hàm số f (x) =
A. −1.

Trang 6/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1

0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
π
Câu 79. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2 3.
C. T = 2.
D. T = 4.
A. T = 3 3 + 1.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 80. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
Câu 78. [3-12217d] Cho hàm số y = ln


Câu 81. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.
5
Câu 82. Tính lim
n+3
A. 0.
B. 2.
C. 3.

D. Năm mặt.

D. 1.

Câu 83. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 84. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
13
23
.
B. − .
C.

.
D.
.
A. −
100
16
25
100
Câu 85. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
D. a 2.
A.
.
B.
.
C. a 3.
2
3
Câu 86. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3

a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
48
24
Câu 87. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.
D. 2.
2−n
bằng
Câu 88. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 0.
D. 2.


Câu 89. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
a3 6
a 6
a3 6
a3 2
.
B.
.
C.
.
D.
.
A.
18
36
6
6
Câu 90. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.
D. {4; 3}.
Câu 91.! Dãy số nào sau đây có giới! hạn là 0?
n
n

1
5
A.
.
B. − .
3
3

!n
5
C.
.
3

Câu 92. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.

!n
4
D.
.
e
D. x = −2.
Trang 7/10 Mã đề 1


Câu 93. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể

tích khối √
chóp S .ABMN là



3
a3 3
2a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3

Câu 94. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 6.
D. 4.
n−1
Câu 95. Tính lim 2

n +2
A. 0.
B. 1.
C. 3.
D. 2.
tan x + m
Câu 96. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).

x2 + 3x + 5
Câu 97. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
x2
Câu 98. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e

1
1
C. M = e, m = 1.
D. M = e, m = .
A. M = e, m = 0.
B. M = , m = 0.
e
e
Câu 99. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

C. 20.

D. 30.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 100. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 101. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728

23
1079
1637
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 102. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 103. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 104. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 3 mặt.
C. 4 mặt.


D. 6 mặt.

Câu 105. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 106. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z

−1 − i 3

−1 + i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Trang 8/10 Mã đề 1


Câu 107. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vơ nghiệm.
Câu 108. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. 3.

C. 6.

D. −3.


Câu 109. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Câu 110.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 111.
Các khẳng định nào Z
sau đây là sai?
Z
A.
Z
C.

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k

f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Câu 112. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.

C. 10.

Z

f (u)dx = F(u) +C.

D. 8.

[ = 60◦ , S O
Câu 113. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S√BC) bằng

2a 57
a 57
a 57
A. a 57.
.
C.
.
D.

.
B.
17
19
19
Câu 114. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a
a 3
.
B.
.
C.
.
D. a3 .
A.
3
9
3
Câu 115. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.

C. 210 triệu.
D. 220 triệu.
Câu 116. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
Câu 117. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
2n − 3
Câu 118. Tính lim 2

bằng
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 119. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
x+1
Câu 120. Tính lim
bằng
x→+∞ 4x + 3
1
A. .
B. 3.
3

C. 8.

C.

1
.
4

D. 20.

D. 1.
Trang 9/10 Mã đề 1



Câu 121. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 122. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.
B. log2 a =
loga 2
log2 a
Câu 123. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Câu 124. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).

C. A(4; −8).
D. A(−4; −8)(.
1
Câu 125. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 126. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 127. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. aαβ = (aα )β .
B. β = a β .
a
Câu 128. Tứ diện đều thuộc loại
A. {3; 3}.

B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 129. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
2a 3
a3
a
.
B.
.
C.
.

D.
.
A.
6
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

D

4.

5.

D

6. A


C

7.

14.

15.

D

16.

17.

D

12.

B
D

C
B

18. A

C

19. A


20. A

21.

B

22.

23.

B

24.

25.

B

26.

27.

D

28. A

29.

D


30.

31. A

32.

33.

B

34.

35.

B

36. A

37. A

C
D
B
D
B
C

38. A

39.


D

40. A

41.

D

42. A

43.

D

44.

45. A

46.

47. A

48. A

49.

D

51.


C
D

D
B

56. A

57.

C

58.

59.

C

60.

D
C

62.

B

63.


D

65.

C

52. A
54.

55.

D

50.

53. A

67.

C

10. A

13.

61.

C

8.


9. A
11.

D

C

64.

C

66.

C

68.

B
1

D

D


69.

C
D


71.
73. A
75.
77.

D

C

72.

C

74.

C

76.

C

78.

B
D

79.

C


82. A

83. A

84. A

85. A

86.
C

87.

D

80.

C

81.

70.

D

88. A

89. A


90.

91. A

92. A

B

94.

D

95. A

96.

D

97. A

98. A

93.

B

D

99.


100.

101. A

102. A
D

103.

104.

C

105.
107.

B

C

110.

D

112.

D

114.


115. A
117.

C

108.

B

113.

C

106. A

109. A
111.

B

C

116. A
B

118.
D

119.


120.

121. A
123.

B

C

122.

B

124.

B

125.

B

126.

127.

B

128. A

129.


B

130.

2

C

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×