TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Câu 1. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 2. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Câu 3. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 5.
D. 3.
Câu 4. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 5. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 6. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Câu 7. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
√
3
3
3
3
B.
.
C.
.
D.
.
A. .
4
12
4
2
Câu 8. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 216 triệu.
B. 212 triệu.
C. 210 triệu.
D. 220 triệu.
1
Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 10. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
1 + 2 + ··· + n
Câu 11. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un không có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
√
Câu 12. √Xác định phần ảo của số
phức
z
=
(
2 + 3i)2
√
A. −6 2.
B. 6 2.
C. −7.
D. 7.
Câu 13.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Z
B.
Z
D.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C.
Trang 1/10 Mã đề 1
Câu 14. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√
√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.
.
C.
.
D.
.
A.
16
4
8
32
Câu 15. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 16. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 32π.
D. 8π.
Câu 17. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
2
D. D = (−2; 1).
2
Câu 18. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.
D. 7.
Câu 19. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 20. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 1.
Câu 21. [1-c] Giá trị biểu thức
A. 3.
D. −8.
Câu 22. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 23. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 3.
C. 2e.
D.
2
.
e
π
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
√
Câu 25. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
Câu 26. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
Câu 27. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
Câu 28. Tính lim
A. 2.
2n2 − 1
3n6 + n4
B.
2
.
3
x→a
D. lim f (x) = f (a).
x→a
C. 5.
D. 8.
C. 1.
D. 0.
Trang 2/10 Mã đề 1
x = 1 + 3t
Câu 29. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t
A.
.
B.
y=1+t
y = −10 + 11t . C.
y = −10 + 11t . D.
y = 1 + 4t .
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
Câu 30. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 12.
D. 30.
x−1 y z+1
= =
và
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
√
√
Câu 32. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
3
2
2
Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 35. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
D. 8.
Câu 36. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 5.
C. 5.
D. 25.
5
Câu 37. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
√
x→+∞
x→+∞
Câu 38. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
Câu 39. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 40. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.
D. 3 mặt.
Trang 3/10 Mã đề 1
Câu 41. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có vơ số.
D. Có một.
Câu 42. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
Câu 44. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 68.
B. 34.
C.
.
D. 5.
17
Câu 45. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
1 − 2n
bằng?
Câu 46. [1] Tính lim
3n + 1
1
2
A. .
B. .
3
3
C. 1.
2
D. − .
3
Câu 47. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 48. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
2
4
8
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 22.
D. S = 135.
Câu 50. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 51. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 12.
D. 8.
Câu 52. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 8.
D. 30.
Trang 4/10 Mã đề 1
Câu 53. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 54. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 55. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 56. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 3.
D. V = 6.
Câu 57. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
x+1
bằng
Câu 58. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
2
6
2
2
Câu 59. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. Khơng tồn tại.
B. −7.
C. −3.
D. −5.
Câu 60. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −7.
D. −4.
27
2n + 1
Câu 61. Tính giới hạn lim
3n + 2
1
3
2
B. .
C. 0.
D. .
A. .
3
2
2
Câu 62. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 63. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m > 4.
0 0 0 0
0
Câu 64.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 65. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 66. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.
C. 9 cạnh.
D. 12 cạnh.
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
a3 3
2a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
3
6
Trang 5/10 Mã đề 1
Câu 68. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (III) sai.
C. Câu (II) sai.
D. Khơng có câu nào
sai.
Câu 69. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 70. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1134 m.
D. 1202 m.
Câu 71. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 8.
D. 3.
2−n
bằng
Câu 72. Giá trị của giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
D. −1.
un
Câu 73. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 74. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
√
Câu 75. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. [3; 4).
B. 2; .
C. (1; 2).
D.
;3 .
2
2
Câu 76. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. 7.
C.
.
D. .
2
2
1
Câu 77. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 78. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 79. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log √2 x.
Trang 6/10 Mã đề 1
Câu 80. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
2
Câu 81. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 2 5.
x−3 x−2 x−1
x
Câu 82. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 83. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Câu 84. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].
D. [−1; 2).
x
Câu 85.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. .
C. 1.
D. .
A.
2
2
2
Câu 86. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2.
B.
.
C. 2 13.
D. 26.
13
Câu 87. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
C. +∞.
D. 0.
Câu 88. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
tan x + m
Câu 89. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 90. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
Câu 91. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
D. (2; +∞).
C. x = 3.
D. x = 1.
Câu 92. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 3.
C. 2.
D. 1.
Câu 93. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 2.
C. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 4.
Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Trang 7/10 Mã đề 1
√
Câu 95. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
Câu 96. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.
Câu 97. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a
4a 3
4a3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 98. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − 2 .
D. − .
2e
e
e
[ = 60◦ , S O
Câu 99. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Câu 100. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 101. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 102. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
2
4
3
Câu 103. Cho z là nghiệm của phương trình
√
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
.
C. P = 2.
D. P =
.
A. P = 2i.
B. P =
2
2
Câu 104. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
log 2x
Câu 105. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
x ln 10
2x ln 10
x3
D. y0 =
2x3
1
.
ln 10
2
Câu 106. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.
D. 4.
Câu 107. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 8/10 Mã đề 1
Z
B. Nếu
Z
C. Nếu
f (x)dx =
Z
f (x)dx =
Z
g(x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 108. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n
B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.
Câu 109. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Câu 110. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
C. (−∞; 0) và (2; +∞). D. (0; +∞).
Câu 111. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
C. .
D.
.
A. a.
B. .
2
3
2
Câu 112. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
π π
Câu 113. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
Câu 114. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
C. = =
.
D.
=
=
.
1 1
1
2
3
4
1
Câu 115. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 4.
D. 1.
π
Câu 116. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
2
2
sin x
Câu 118. [3-c] Giá trị nhỏ nhất và giá
+ 2cos x√lần lượt là
√ trị lớn nhất của hàm√số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
Trang 9/10 Mã đề 1
Câu 119. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
1 − 2n
n2 − 3n
.
B.
u
=
.
C.
u
=
.
D. un =
.
A. un =
n
n
2
2
2
n
5n − 3n
(n + 1)
5n + n2
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là
√
3
3
3
√
a 3
a 2
a 3
A.
.
B. a3 3.
.
D.
.
C.
4
2
2
Câu 121.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 122. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
C. D = R \ {0}.
D. D = R \ {1}.
Câu 123. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
9
18
15
d = 120◦ .
Câu 124. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Z 2
ln(x + 1)
Câu 125. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.
D. 1.
Câu 126. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; − .
C. −∞; .
A.
2
2
2
!
1
D. − ; +∞ .
2
Câu 127. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đôi.
Câu 128. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 10.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = 1.
12 + 22 + · · · + n2
Câu 129. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. 0.
D. .
3
3
!
5 − 12x
Câu 130. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
C
2.
4. A
B
D
6.
5. A
C
7.
8.
9.
B
10. A
11.
B
12.
13.
B
14.
15.
B
17. A
18.
D
19.
20.
D
21.
22. A
23.
24.
C
B
B
C
B
D
B
25.
C
26.
D
27.
B
28.
D
29.
B
30.
32.
31. A
C
B
33. A
34.
D
35.
36.
D
37. A
39.
38. A
40.
42.
B
43.
D
B
B
C
49.
50.
C
51.
B
D
55.
D
D
59. A
60. A
61. A
B
D
66. A
68.
C
57. A
58.
64.
D
53.
56. A
62.
C
47.
48.
54.
B
45.
C
46.
D
41. A
C
44.
52.
C
63.
C
65.
C
67.
D
69.
1
B
D
71.
70. A
72.
74.
D
D
78. A
C
80.
75.
D
77.
D
79.
D
C
81.
D
82.
C
73.
B
76.
D
83. A
84.
B
85.
86.
B
87.
D
89.
D
91.
D
88.
D
90. A
92.
D
C
93. A
94.
B
95.
D
96.
B
97.
D
98. A
99. A
101.
100. A
102.
D
103.
104. A
D
107.
108.
D
109.
110.
C
111. A
112.
C
113.
114.
C
115.
116.
C
117.
118.
C
119.
120.
C
121. A
B
124.
126.
125. A
127.
129.
C
105. A
106.
122.
D
B
C
C
D
C
D
B
D
128. A
C
D
130.
2
D