Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 6 (194)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.84 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

Câu 2. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 3. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
4


2
8
Câu 4. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 10 .(3)40
C 20 .(3)30
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 5. √
Biểu thức nào sau đây khơng
có nghĩa

−3
A. (− 2)0 .
B.
−1.
C. 0−1 .
D. (−1)−1 .
Câu 6. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)

một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
24
12
6
Câu 7. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 9. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.

D. F(x) = G(x) trên khoảng (a; b).
Câu 10. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. .
B. 2.
C. −2.
2
Câu 11. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 8.

1
D. − .
2
D. 20.

Câu 12. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
D. 2e + 1.
e
Câu 13. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P =

.
C. P = 2.
D. P =
.
2
2
Trang 1/10 Mã đề 1


Câu 14. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. 1.
C. .
D.
.
2
2
2
Câu 15. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3

.
C. 6 3.
.
A. 8 3.
B.
D.
3
3
Câu 16. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 6.
D. V = 3.
Câu 17. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 18. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.

D. {4; 3}.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)

bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.


B. 1.

C. 2.

D. 3.

Câu 22. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
ln x p 2
1
Câu 23. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3

9
3
Câu 24. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 25. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).

D. R.
Trang 2/10 Mã đề 1



Câu 26. Tính lim


4n2 + 1 − n + 2
bằng
2n − 3
B. +∞.

3
.
2
Câu 27. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.

B. n lần.
C. n2 lần.
D. 3n3 lần.
A. 2.

C. 1.

D.

Câu 28. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 2, 4, 8.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 29. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.
D. 4 mặt.
1
Câu 30. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 31. Tứ diện đều thuộc loại
A. {4; 3}.

B. {5; 3}.

C. {3; 4}.

Câu 32. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. {3; 3}.
D. 5 mặt.

Câu 33. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.

C. 4.

D. 5.

Câu 35. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là

A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
!
x+1
Câu 36. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Câu 37. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 38. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.

B. −3.
C. −6.
D. 3.
Câu 39. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 40. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.
Trang 3/10 Mã đề 1



2n − 3
Câu 41. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
Câu 42. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −2.

C. −∞.
15
30

D. 1.

bằng
C. −4.

D. 2.

Câu 43. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.

C. 3, 55.
D. 24.
Câu 44. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 46. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3

chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 47. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
6
15
!x
1
Câu 48. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.

D. log2 3.
Câu 49. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 51. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).

B. (0; −2).
C. (2; 2).

D. (1; −3).

Câu 52. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Năm cạnh.
D. Ba cạnh.
x+1
Câu 53. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
3
4
Câu 54. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 4/10 Mã đề 1


C. Một hình chóp tam giác và một hình chóp tứ giác.

D. Hai hình chóp tứ giác.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 55. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 56. Cho
x2
1
A. 0.
B. 3.
C. 1.
D. −3.
Câu 57. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 3.

C. +∞.


D. 1.

Câu 58. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
25
5
Câu 59. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 60. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.


D. m < 0.

Câu 61. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.

D. 11 cạnh.

C. 10 cạnh.

Câu 62. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
3
2
2
1
bằng
Câu 63. [1] Giá trị của biểu thức log √3
10
1
1

A. .
B. 3.
C. −3.
D. − .
3
3
2
x − 12x + 35
Câu 64. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
log(mx)
Câu 65. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
 π π
3
Câu 66. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
A. 3.
B. 1.
C. −1.
D. 7.
Câu 67. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Z 3
a
x
a
Câu 68. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.
D. P = −2.
Trang 5/10 Mã đề 1


Câu 69. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.

B. {5; 2}.
C. {3}.
D. {2}.
x+2
đồng biến trên khoảng
Câu 70. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 71. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 72. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 73. Giá trị của lim(2x2 − 3x + 1) là

A. +∞.

x→1

B. 0.

Câu 74. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
Câu 75. [1] Tập xác định của hàm số y = 4
A. D = R \ {1; 2}.
B. D = [2; 1].

x2 +x−2

C. 1.

D. 2.

C. 6.

D. 10.

C. D = (−2; 1).

D. D = R.



Câu 76. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 77. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.

Câu 78. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa3 6
πa3 3
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =

6
6
3
2
Câu 79. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A.
.
B. .
C. 5.
D. 7.
2
2
3

Câu 80. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
Câu 81. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

D. e2 .

B. lim un = c (un = c là hằng số).
1

D. lim k = 0.
n

Câu 82. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Trang 6/10 Mã đề 1


Câu 83. Các khẳng định nào sau đây là sai?
!0
Z
Z
Z
f (x)dx = f (x).
A.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
Z
Z

Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 84. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 85. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
!2x−1
!2−x
3
3
Câu 86. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).

D. Khối tứ diện đều.


D. (−∞; 1].

Câu 87. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Câu 88. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
2
3
6
!4x
!2−x
2

3
Câu 89. Tập các số x thỏa mãn


3 # 2
"
!
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Câu 90. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
Câu 91. [2] Tổng các nghiệm của phương trình 3
A. 6.
B. 8.


C. 8.

D. 6.

x2 −3x+8

= 92x−1 là
C. 5.

D. 7.

Câu 92. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.

B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2

Câu 93. [3-1132d] Cho dãy số (un ) với un =

Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Trang 7/10 Mã đề 1


Câu 95. Hàm số y = x +

A. −1.

1
có giá trị cực đại là
x
B. 2.

C. −2.

D. 1.

Câu 96. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 22.
D. 21.
2−n
Câu 97. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.
C. −1.
D. 0.
1 − 2n
bằng?
Câu 98. [1] Tính lim
3n + 1

1
2
2
A. .
B. .
C. − .
D. 1.
3
3
3
Câu 99. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 6).
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.
B. 6.
C. 2 2.
D. 2 3.

Câu 100. [3-1214d] Cho hàm số y =

Câu 101. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a

C. f (x) có giới hạn hữu hạn khi x → a.
Câu 102.
!n Dãy số nào sau đây có giới
!n hạn là 0?
5
1
.
B. − .
A.
3
3

x→a

x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.
!n
4
C.
.
e


!n
5
D.
.
3

Câu 103. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 104. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng

(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
2
3
2
Câu 105. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 106. [2-c] (Minh họa 2019) Ơng A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.

B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Trang 8/10 Mã đề 1


x+3
Câu 107. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 108. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
C. a 2.
D.
A.
.
B. 2a 2.
.

4
2
[ = 60◦ , S O
Câu 109. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19

Câu 110. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
3
2

x
Câu 111. [2]
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
B. m = ±3.
C. m = ± 3.
D. m = ±1.
A. m = ± 2.

Câu 112. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
Câu 113. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 2400 m.
D. 1202 m.
Z 1
Câu 114. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4


0

B. 0.

C.

1
.
2

D. 1.

Câu 115. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
2

Câu 116. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.

C. 1 − log2 3.

D. 3 − log2 3.

Câu 117. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
8
7
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 118. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.


Câu 119. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
3
12
Trang 9/10 Mã đề 1


π
Câu 120. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


D. T = 3 3 + 1.
A. T = 2.
B. T = 4.

C. T = 2 3.
Câu 121. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
1
Câu 122. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 4.
D. 3.
Câu 123. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Câu 124. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 125. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Khơng tồn tại.
B. −5.
C. −7.



Câu 126. √Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x
A. 2 + 3.
B. 3.
C. 2 3.


D. 3 2.

Câu 127. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.

D. 20.

C. 8.

D. −3.

Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
.
B.
.

C.
.
D. a3 3.
A.
3
3
6
Câu 129. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 130. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. .
C. 5.
5


D. 5.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

4.

B

5.

8.
D

B
B
B

C

14.

15.

C

16. A

D

17.

C

12.

13.

18.

C
C

19.

C

20.

21.

C

22. A
24.

23. A
B


D
C

26.

27. A
29.

C

10.

B

11.

25.

D

6.

C

7. A
9.

C


2.

28. A
30.

B

31.

D

33.

B

32. A

C

34.

B

35.

B

36.

B


37.

B

38.

B

39.

B

40. A

41. A

42.

43. A

44.

B

46.

B

45.


B

48.

49.

C

50. A

51.

52.

D

54. A
56.

C

D

D
B

53.

D


55.

D

57. A

58. A

59. A

60.

C

61.

C

62. A

63.

D

64. A

65.

D


67.

D

66.

B

68. A

69. A
1


70.

D

71.

72.

D

73.

74.

B


76. A
C

78.

D

77.

D

79.
81.

82. A

83.
B
D

D

89.

B

92.

C


94.

D

D

93.

D

95.

C
C

C

97.

98.

C

99.

100.

D


103.

104.

C

105. A

106.

C

107.
D

110.

B

111.
D

114.

B

109. A

C


112.

D

101. A

102. A

108.

C

91.

96.

D

113. A
115.

C

116. A

D

117. A

118.


D
B

119.

C

121.

C

123.

122. A
124.

D

125. A

C
D

126.
128.

C

87. A


88.

120.

B

85. A

86. A
90.

B

75.

80. A
84.

D

127.

B

129.

130. A

2


B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×