TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+1
c+2
c+2
Câu 2. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
e
Z 2
ln(x + 1)
Câu 3. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
−2x2
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B.
.
e
2e3
trên đoạn [1; 2] là
2
C. 3 .
e
D.
3b + 2ac
.
c+3
D. 2e + 1.
D. 3.
D.
1
√ .
2 e
d = 300 .
Câu 5. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √
√
√
a3 3
3a3 3
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
A. V =
2
2
Câu 6. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 √
+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 7. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 8. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln 2.
ln 2
C. y0 = 2 x . ln x.
D. y0 =
1
2 x . ln
x
.
Câu 9. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một mơn nằm cạnh nhau là
2
1
1
9
B.
.
C. .
D.
.
A. .
5
10
5
10
x2 − 3x + 3
Câu 10. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 2.
C. x = 0.
D. x = 1.
2
2
2
1 + 2 + ··· + n
Câu 11. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. +∞.
D. 0.
3
3
Câu 12. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
Câu 13. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
√
Câu 14. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4
1−x2
C. 144.
D. 24.
C. {5; 3}.
D. {3; 3}.
√
− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
− 4.2 x+
1−x2
Trang 1/10 Mã đề 1
Câu 15. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
D. a 6.
A. a 3.
B. 2a 6.
C.
2
Câu 16. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 17. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
√
Câu 18. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. .
C. − .
D. −2.
2
2
Câu 19. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
24
6
12
Câu 20. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 21. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 30.
D. 8.
Câu 22.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Câu 24. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
√
√
4n2 + 1 − n + 2
bằng
Câu 25. Tính lim
2n − 3
A. 1.
B. +∞.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
C. 2.
D.
3
.
2
Câu 26. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
√
Câu 27. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. V = a 2.
B. V = 2a .
C. 2a 2.
D.
.
3
Trang 2/10 Mã đề 1
Câu 28. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 30. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
Câu 31. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
log 2x
là
Câu 33. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
2x ln 10
x3
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Câu 34. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B. 2 13.
C.
.
D. 2.
A. 26.
13
π
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A. 1.
B.
e .
C.
e .
D. e 3 .
2
2
2
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
4a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
√
Câu 37. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vơ nghiệm.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a
a 2
A.
.
B. .
C. .
D.
.
3
3
4
3
√
Câu 39. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 40. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
Trang 3/10 Mã đề 1
Câu 41. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 3.
D. 2.
Z 3
x
a
a
Câu 42. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 28.
D. P = 16.
Câu 43. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
C. 4.
D. 8.
√
Câu 45. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
D. 7.
√
Câu 46. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
Câu 47. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
3
3
3
2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 49. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B.
.
C. a 3.
D.
.
A.
2
2
3
Câu 50. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 51. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 1.
B. 2.
C.
.
2
D.
1
.
2
Câu 52. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 53. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
un
Câu 54. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. 0.
D. −∞.
Trang 4/10 Mã đề 1
Câu 55. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
x−1 y z+1
Câu 56. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.
Câu 57. Tính lim
A. 0.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.
C.
7
.
3
Câu 58. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.
2
D. - .
3
D. {5; 3}.
Câu 59. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Câu 60. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (II) đúng.
Câu 61. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 62. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
1 + 2 + ··· + n
Câu 63. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 1.
2
x2 − 12x + 35
Câu 64. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
D. −∞.
5
5
Câu 65. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; .
B. −∞; − .
C.
; +∞ .
D. − ; +∞ .
2
2
2
2
Trang 5/10 Mã đề 1
1 − n2
Câu 66. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. − .
D. .
3
2
2
3
2
Câu 67. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 68. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 69. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
4
8
12
Câu 70. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 7 mặt.
D. 9 mặt.
9t
Câu 71. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 2.
D. 1.
Câu 72. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 73. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
D. 68.
A. 5.
B. 34.
C.
17
Câu 74. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 75. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 12.
x2 +2x
Câu 76. [2] Tổng các nghiệm của phương trình 2
= 8 là
A. −5.
B. 6.
C. −6.
!2x−1
!2−x
3
3
Câu 77. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
D. 10.
2−x
D. 5.
D. [1; +∞).
Câu 78. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.
D. −2.
x−2 x−1
x
x+1
Câu 79. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 80. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 81. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A. 2; .
B. [3; 4).
C. (1; 2).
D.
;3 .
2
2
√
ab.
Trang 6/10 Mã đề 1
Câu 82. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 83. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 84. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 85. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 8.
D. 12.
2
Câu 86. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.
√
D. |z| = 2 5.
Câu 87. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
Câu 88. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. 5.
D. 7.
C. Khối tứ diện đều.
D. Khối bát diện đều.
C. −3.
D. +∞.
2
Câu 89. Tính lim
x→3
A. 3.
x −9
x−3
B. 6.
Câu 90. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
√
D. 3 + 4 2.
Câu 91.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.
C.
.
D. .
A.
4
2
12
4
3
2
Câu 92. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Z 1
Câu 93. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. 0.
C. .
2
4
Câu 94. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
B.
D. 1.
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 95. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
Câu 96. Tính lim
A. +∞.
x→1
x3 − 1
x−1
B. −∞.
C. 0.
D. 3.
1
Câu 97. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
Trang 7/10 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 98. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
12
24
24
x
Câu 99. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A. 1.
B.
.
C. .
D. .
2
2
2
Câu 100. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {5}.
D. {2}.
Câu 101. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 102. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 103. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.
D. 1.
Câu 104. Biểu thức nào sau đây khơng có nghĩa
A. 0−1 .
B. (−1)−1 .
D.
√
C. (− 2)0 .
√
−1.
−3
Câu 105. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
8
2
4
Câu 106. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
5a 3
4a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 107. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 10 năm.
D. 7 năm.
Câu 108. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 15
a3 6
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
2
2
sin x
Câu 109.
+ 2cos x√lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá
√ trị lớn nhất của hàm số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
Câu 110. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
C. 10.
√
√
Câu 111. Tìm giá trị lớn nhất của
hàm
số
y
=
x
+
3
+
6−
√
√x
A. 3.
B. 3 2.
C. 2 + 3.
D. 6.
√
D. 2 3.
Trang 8/10 Mã đề 1
Câu 112. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
C. |z| = 17.
D. |z| = 17.
A. |z| = 10.
B. |z| = 10.
Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
Câu 114. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.
log 2x
là
Câu 115. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
x
2x3 ln 10
Câu 116. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).
1
D. V = S h.
2
D. m = −3.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
D. (−∞; 1).
Câu 117. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 118. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
2
Câu 119. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 4.
D. 2.
Câu 120. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
D. Khối bát diện đều.
C. Khối 12 mặt đều.
Câu 121. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 122. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 123. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 124. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
2
Câu 125. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
A. lim un = c (Với un = c là hằng số).
Câu 126. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
d = 120◦ .
Câu 127. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 4a.
D. 2a.
2
Trang 9/10 Mã đề 1
Câu 128. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Bát diện đều.
D. Thập nhị diện đều.
x2 − 5x + 6
Câu 129. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 5.
D. 1.
Câu 130. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3. A
4. A
5. A
6.
7. A
8.
9.
11.
B
13. A
D
17.
B
D
12.
C
14.
C
16. A
D
18.
C
D
19.
D
10.
D
15.
B
20.
21.
B
22. A
23.
B
24. A
25. A
26.
B
B
27.
C
28.
29.
C
30.
C
32.
C
34.
C
36.
C
31.
B
33.
D
35.
37.
C
B
39.
38. A
40. A
C
41.
D
42. A
43.
D
44.
C
45.
D
D
46.
C
47.
D
48.
B
49.
D
50.
B
52.
B
51.
B
53.
55.
C
B
D
57.
59.
63.
65.
C
56.
C
58.
B
60.
C
61.
54.
D
D
62. A
64.
C
D
66.
67. A
68. A
1
B
C
69.
C
70.
71.
C
72.
C
73.
C
74.
C
75.
D
76. A
B
77.
D
78.
79.
D
80.
B
81.
D
82.
B
83.
D
84.
B
D
85.
86.
87.
B
88. A
89.
B
90. A
D
B
91. A
92.
93. A
94.
D
96.
D
95.
B
B
97. A
98.
C
99. A
100.
C
101.
D
102. A
103. A
104. A
105.
D
106.
D
107. A
108.
109. A
110.
B
112.
B
114.
B
111.
B
113. A
115.
D
116. A
117.
C
118. A
119.
C
120.
121.
D
122.
123. A
125.
124.
D
B
C
126. A
B
127. A
129.
C
B
2
128.
D
130.
D