TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
!4x
!2−x
3
2
≤
là
Câu 1. Tập các số x thỏa mãn
3
#
# 2
2
2
A. −∞; .
B. −∞; .
5
3
"
!
2
C.
; +∞ .
5
Câu 2. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 5.
C. 5.
5
"
!
2
D. − ; +∞ .
3
√
Câu 3. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 25.
D. 144.
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
d = 300 .
Câu 5. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.
√
3
√
a3 3
3a 3
3
3
.
C. V = 3a 3.
.
D. V =
A. V = 6a .
B. V =
2
2
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3
√
2a 3
a 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
Câu 7. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
1079
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
[ = 60◦ , S O
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
x2 − 5x + 6
Câu 9. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. 1.
D. −1.
!
3n + 2
2
Câu 10. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 11. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
2
x − 3x + 3
Câu 12. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 1.
C. x = 2.
D. x = 0.
Trang 1/10 Mã đề 1
√
Câu 13. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
√
Câu 14. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
√
Câu 15. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 6.
D. 108.
Câu 16. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 17. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 18. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 19.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
!0
Z
f (x)dx = f (x).
C.
A.
f (u)dx = F(u) +C. B.
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 20. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
D. m =
1 + 2e
.
4e + 2
d = 30◦ , biết S BC là tam giác đều
Câu 21. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
13
9
16
1
Câu 22. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 23. [3] Biết rằng giá trị lớn nhất của hàm số y =
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 135.
D. S = 22.
Câu 24. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
Câu 25. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
D. Một mặt.
Trang 2/10 Mã đề 1
Câu 26. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
Câu 27. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
x−2
Câu 28. Tính lim
x→+∞ x + 3
2
C. 2.
D. 1.
A. −3.
B. − .
3
Câu 29. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 1.
C. 3.
Câu 30. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.
D. 2.
D. Hình chóp.
Câu 31. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√M + m
√
A. 16.
B. 7 3.
C. 8 2.
D. 8 3.
Z 2
ln(x + 1)
Câu 32. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. 3.
D. −3.
Câu 33. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
B.
.
A. − .
3
e
!n
!n
5
1
C.
.
D.
.
3
3
1
Câu 34. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 35. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 36. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
5a3 3
4a3 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 37. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 38. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Trang 3/10 Mã đề 1
Câu 39. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Câu 40. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5; 2}.
D. {5}.
5
Câu 41. Tính lim
n+3
A. 3.
B. 2.
C. 1.
D. 0.
a
1
Câu 42. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
1
Câu 43. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 44. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 45. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
B.
.
C.
.
A. .
4
2
4
√
Câu 46. Thể tích của khối lập phương có cạnh bằng a 2 √
√
2a3 2
B. V = 2a3 .
C.
.
A. 2a3 2.
3
Câu 47. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
√
3
D.
.
12
√
D. V = a3 2.
D. m , 0.
Câu 48. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
1 − 2n
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
x
Câu 50. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 49. [1] Tính lim
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 51. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 52. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
5
8
7
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Trang 4/10 Mã đề 1
Câu 53. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 54. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
25
25
3
5
Câu 55. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
2
2
2
2
Câu 56. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
Câu 57. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
π π
Câu 58. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
1
Câu 59. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
√
Câu 60. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
x3 − 1
Câu 61. Tính lim
x→1 x − 1
A. 3.
B. 0.
C. +∞.
D. −∞.
Câu 62. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 63. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).
D. (−1; 1).
Câu 64. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
x+2
Câu 65. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 66. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 7.
D. 0.
Câu 67. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Trang 5/10 Mã đề 1
Câu 68.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
A.
−1.
B. (−1) .
x+1
Câu 69. Tính lim
bằng
x→−∞ 6x − 2
1
1
B. .
A. .
2
3
C. 0−1 .
√
D. (− 2)0 .
C. 1.
D.
1
.
6
Câu 70. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 71. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 72. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 10 cạnh.
x2
Câu 73. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
D. 2 − log2 3.
Câu 74. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 75.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 76. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
6
15
Câu 77. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
Câu 78. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 80. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = R.
Trang 6/10 Mã đề 1
Câu 81. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 82. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
√
x2 + 3x + 5
Câu 83. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. − .
4
Câu 84.
C. {3; 3}.
C.
1
.
4
D. {4; 3}.
D. 0.
[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
Câu 85. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 0.
x − 12x + 35
25 − 5x
q
x+ log23 x + 1+4m−1 =
D. m ∈ [0; 1].
D. m > 1.
2
Câu 86. Tính lim
x→5
2
A. .
5
B. −∞.
2
C. − .
5
D. +∞.
Câu 87. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
Câu 88. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. a.
D. .
A.
2
3
2
8
Câu 89. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 81.
D. 64.
[ = 60◦ , S O
Câu 90. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√
a 57
a 57
2a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
cos n + sin n
Câu 91. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 92. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.
D. 10 mặt.
Câu 93. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Trang 7/10 Mã đề 1
Câu 94. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 95. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 3.
Câu 96. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 1.
D. 4.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 97. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
D. a 6.
B. a 3.
C.
A. 2a 6.
2
3
Câu 98. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m2 + 1)2 x trên [0; 1] bằng 2√
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.
Câu 99. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vuông góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 3
a 2
a 3
A.
.
B. a3 3.
C.
.
D.
.
4
2
2
Câu 102. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
π
Câu 103. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
x=t
Câu 104. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
Trang 8/10 Mã đề 1
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
0 0 0 0
Câu 105. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
3
2
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 106. [2-c] Cho hàm số f (x) = x
9 +3
1
B. 1.
C. −1.
D. 2.
A. .
2
Câu 107. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −5.
D. −9.
Câu 108. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
Câu 109. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 0.
D. 2.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 110. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 111. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 2.
√
D. 5.
Câu 112. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 62.
D. 64.
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a
3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
Câu 114. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 115. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 1.
B. 2.
C.
.
D. 3.
3
mx − 4
Câu 116. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 67.
D. 34.
Câu 117. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = ln x − 1.
Câu 118. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Trang 9/10 Mã đề 1
Câu 119. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
3a
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
A. .
B.
.
C. .
D.
.
4
3
3
3
Câu 121. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 122. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
4
12
8
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 123. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là
√
3
3
√
a 2
a 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
12
24
2
Câu 124. Cho z √
là nghiệm của phương trình x + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 125. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
Câu 126. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
[
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60◦ , S A ⊥ (ABCD).
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
a3 2
a3 2
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
0 0 0
d = 60◦ . Đường chéo
Câu 128. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
x2
Câu 129. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 130. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
D
3.
D
4.
D
5.
B
6. A
7.
B
8. A
9.
11.
D
B
13.
15.
B
12.
B
D
14.
C
B
C
16.
C
17.
10.
19. A
18.
B
20.
B
22.
C
23. A
24.
C
25. A
26. A
21.
B
27.
28.
D
29.
30.
C
31. A
33.
D
35. A
C
40.
D
42.
D
34.
D
C
39.
D
41.
D
45.
C
47.
46. A
48.
50.
D
43. A
C
44.
B
32.
36.
37.
D
D
49.
C
51.
B
52.
D
D
53.
C
54. A
55.
C
56. A
57. A
58.
C
59.
B
60.
D
61. A
62.
D
63.
64.
D
65. A
66. A
68.
C
D
67. A
69.
C
1
D
70.
D
71.
72.
D
73.
74.
D
75.
C
78.
C
C
77.
79.
D
82.
B
B
86. A
D
87.
88.
C
C
89.
C
90.
91.
C
92. A
93.
C
94. A
95.
C
96.
97.
D
99.
D
100. A
101.
D
102.
C
105.
C
C
104.
B
106.
B
D
108.
B
C
109.
B
98.
103. A
110.
111. A
B
112.
113.
115.
D
84. A
85. A
107.
D
80.
81. A
83.
C
C
B
117. A
C
114.
D
116.
D
118.
B
119.
C
120.
D
121.
C
122.
D
124.
D
123. A
125.
D
126.
127. A
129.
C
128. A
130.
D
2
D