Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 9 (175)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.09 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 2. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 3. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = x + ln x.
 π
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4


3 π6
1 π3
e .
e .
A.
B.
C. e .
2
2
2
Câu 5. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

D. y0 = 1 + ln x.

D. 1.

Câu 6. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
Câu 7. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3

3

a 6
a 15
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 8. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
Câu 9. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 10. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

Câu 11. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
A.
.
B.
.
C. .
D. .
10
10
5
5
Trang 1/11 Mã đề 1


Câu 12. Tính lim

2n2 − 1
3n6 + n4


2
.
3

D. 0.

n−1
Câu 13. Tính lim 2
n +2
A. 0.
B. 2.

C. 1.

D. 3.

Câu 14. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

C. 12.

D. 8.

A. 1.

B. 2.

C.


d = 30◦ , biết S BC là tam giác đều
Câu 15. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
13
16
Câu 16. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3

A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 17. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. +∞.

C. 1.

Câu 18. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
Câu 19. Dãy số nào có giới hạn bằng 0?!
n
n3 − 3n
−2
A. un =

.
B. un =
.
n+1
3

!n
6
C. un =
.
5

D. 2.
D. 3 nghiệm.
D. un = n2 − 4n.

8
Câu 20. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.
Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. .
C. −2.
2

2

D. 2.

Câu 22. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
!
3n + 2
2
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.

Câu 24. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5

5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
Câu 25. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 2/11 Mã đề 1


5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 26. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 27. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 28. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 29. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 30. Tìm giới hạn lim
A. 0.

2n + 1
n+1
B. 1.


Câu 31. Giá trị của giới hạn lim
A. −1.

B. 0.
Z

Câu 32. Cho
A. 1.

1

2

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

2−n
bằng
n+1

C. 3.

D. 2.


C. 2.

D. 1.

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 3.
C. −3.

D. 0.

3

Câu 33. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e.
Câu 34. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

Câu 35. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

D. e2 .

1

3|x−1|

= 3m − 2 có nghiệm duy

C. 1.

D. 4.

C. {3; 4}.

D. {3; 3}.

Câu 36. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 37. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.

D. 30.

C. 10.


Câu 38. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 3/11 Mã đề 1


12 + 22 + · · · + n2
Câu 39. [3-1133d] Tính lim
n3
2
A. .

B. +∞.
3
Câu 40. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C.

1
.
3

C. 10.

D. 0.
D. 8.

Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.

D.
.
3
3
6
3
Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
[ = 60◦ , S A ⊥ (ABCD).
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là

√ S C là a. Thể tích khối
3
3

3
a
2
a3 2
a
3
.
C.
.
D.

.
B.
A. a 3.
6
4
12
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 45. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
Câu 46. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 2.
D. 4.
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0

đến đường
√ thẳng BD bằng



a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 48.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z

Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 49. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y =
.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
Câu 50. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 4/11 Mã đề 1


tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?

A. 12 năm.
B. 13 năm.
C. 10 năm.
D. 11 năm.
Câu 51. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 52. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
q
Câu 53. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 54. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.

2
3
Câu 55. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. V = 3S h.
D. Khối tứ diện đều.

Câu 56. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 57. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B. 2.
C. 26.
D.
.
A. 2 13.
13

Câu 58. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C. a 2.
D.
.
4
2
Câu 59. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.

C. (−1)−1 .


D. (− 2)0 .

Câu 60. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng

(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
Câu 61. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 62. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3

a3 3
a3 2
a
3
A.
.
B.
.
C. 2a2 2.
D.

.
12
24
24
Câu 63. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x)g(x)] = ab.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞

D. lim

x→+∞

f (x) a
= .
g(x) b
Trang 5/11 Mã đề 1


Câu 64. Tính lim
x→3


A. 6.

x2 − 9
x−3

B. −3.

D. +∞.

C. 3.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
C. 2 3.
D. 6.
A. 2.
B. 2 2.

Câu 65. [3-1214d] Cho hàm số y =

Câu 66. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC



a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
A.
3
1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.

Câu 69. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
Câu 70. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

D. {5; 3}.

Câu 71. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
.
B.
.

C.
.
D.
.
A.
4913
4913
68
4913
5
Câu 72. Tính lim
n+3
A. 3.
B. 1.
C. 0.
D. 2.
Câu 73. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
1 − 2n
Câu 74. [1] Tính lim
bằng?
3n + 1
2
A. − .
B. 1.
3

C. 4.


C.

D. 5.

1
.
3

D.

2
.
3

Câu 75. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 76. [12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.

B. 2 ≤ m ≤ 3.

Câu 77. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.

1
3|x−2|


= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 < m ≤ 3.

C. 30.

D. 8.
Trang 6/11 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.

Câu 78. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 79. [1] Tính lim
x→3


x−3
bằng?
x+3
B. −∞.

C. +∞.
D. 1.

Câu 80. Tìm
√ giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
B. 2 3.
C. 3 2.
D. 3.
A. 2 + 3.
!
x+1
Câu 81. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B.
.
C. 2017.
D.
.
A.

2017
2018
2018
1 − xy
Câu 82. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
A. 0.



Câu 83. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).

D. (−1; 0).
Câu 84. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −2.
C.
.
D. −7.
27
Câu 85. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
2

Câu 86. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. 2 .
A. √ .
e
e
2 e


D.

1
.
2e3

Câu 87. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 88. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 89. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.

B. Khối bát diện đều.

C. Khối 12 mặt đều.

Câu 90. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.

D. Khối lập phương.
D. Hình chóp.
Trang 7/11 Mã đề 1



Câu 91. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.

.
D.
.
A.
36
6
6
18
Câu 92. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
8
4
7n2 − 2n3 + 1
Câu 93. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. .
D. 1.
3
3

x+3
nghịch biến trên khoảng
Câu 94. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. 1.
C. 3.
D. Vô số.
un
Câu 95. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 96. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n

1
C. √ .
n

D.


sin n
.
n

Câu 97. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
a2 5
a2 7
11a2
a2 2
.
B.
.
C.
.
D.
.
A.
4
16
8
32
π

Câu 98. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
log 2x

Câu 99. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
.
D. y0 =
3
x ln 10
2x ln 10
x

2x3 ln 10
Câu 100. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).

Câu 101. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

D. {4; 3}.

C. {3; 3}.

Câu 102. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Bốn mặt.

D. Hai mặt.

Câu 103.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 8/11 Mã đề 1


Câu 104. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
x−2
Câu 105. Tính lim
x→+∞ x + 3
2
A. 2.
B. 1.
C. −3.
D. − .
3
2x + 1
Câu 106. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.

2
x2
Câu 107. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 108. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.
B. y = log √2 x.

D. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.

2 + 3i)2
Câu 109.
Xác
định
phần
ảo
của
số
phức
z
=

(


A. 6 2.
B. −7.
C. 7.
D. −6 2.
Câu 110. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 2.

D. 0.

Câu 111. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.

D. 0.

C. 7.

Câu 112. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.

C. P =
.
D. P =
.
2
2
Câu 113. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
Câu 114. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 12.

D. 27.

Câu 115. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
.
B.

.
C.
.
D. a 3.
A.
2
2
3
0
Câu 116. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 117. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
Trang 9/11 Mã đề 1


Câu 118. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.


C. D = R.

D. D = R \ {1}.

Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
8
24
24
Câu 120. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .

B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
x
Câu 121. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. 1.
B. .
C.
.
D. .
2
2
2
Câu 122. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
x+2
đồng biến trên khoảng
Câu 123. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vơ số.
B. 1.

C. 2.
D. 3.
1
Câu 124. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 2.
D. 1.

Câu 125. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

x2 + 3x + 5
Câu 126. Tính giới hạn lim
x→−∞
4x − 1
A. 1.
B. 0.
2n − 3
Câu 127. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.

C. 30.


D. 20.

1
C. − .
4

D.

C. 1.

D. 0.

Câu 128. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
e
e
!4x
!2−x
2
3
Câu 129. Tập các số x thỏa mãn


3
2
#

"
!
"
!
2
2
2
B. − ; +∞ .
C.
; +∞ .
A. −∞; .
3
3
5

1
.
4

D. −

1
.
2e

#
2
D. −∞; .
5


Câu 130. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3.

D

4. A

5.

D

6.


7. A
B

10.

11.

B

12.

13. A
15.

C
D

17.

B
D

14.

C

16.

C


18.

B

21.

B

20.
C

23. A
25.

D

8. A

9.

19.

B

B

27.

D


C

22.

B

24.

B

26.

B
C

28.

29. A

30.

31. A

32.

C

34.


C

33.

B

35.

C

36.

37. A
39.

C

41. A
43.

C

D

40.

D

42.


B

44.

B

B

46. A

47.

B

48. A

49.

B

50. A

53.
55.

C

57.

D

C

63.
67.

C

54.

C

58.

59. A
D

65.

52.
56. A

B

61.

B

38.

45.


51. A

D

D

60.

B

62.

B

64. A
66.

C
B

68. A
1

C


69.

70. A


C

71. A

C

72.

73.

74. A

C

75.

76.

D

77.

C

79. A

D

78.


C

80.

C

81.

D

82.

83.

D

84.

D
B

85.

B

86.

C


87.

B

88.

C

89. A

90. A

91.

D

93. A
95.

B

97.

C

94.

C

96.

C

99. A
101.

92.

98.

C

100.

C

102. A

C

103.

D

104.

D
D

105.


B

106.

107.

B

108.

111.

B

112. A

113.

B

114. A
C
D

118.

119.

D


120. A

121. A
D

124.

130.

C

123.

C

125.

C

127.

C

128.

D

116. A

117.


126.

B

110.

109. A

115.

B

D

129.

C

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×