Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 2.
Z Trong các khẳng định sau, khẳng định nào sai? Z
A.
dx = x + C, C là hằng số.
B.
0dx = C, C là hằng số.
Z
Z
xα+1
1
dx = ln |x| + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
C.
x
α+1
Câu 3. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
1
Câu 4. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. 2.
D. −1.
Câu 5. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích
√ thước
√ của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 6. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.
√3
Câu 7. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .
D. 72.
4
3
Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Bốn mặt.
x+2
Câu 9. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 0.
0
0
7
D. a 3 .
D. Hai mặt.
D. 3.
0
Câu 10. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 1.
B. 3.
C. 2.
D.
.
3
π
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
1 π
A.
e .
B. 1.
C.
e .
D. e 3 .
2
2
2
2
x − 12x + 35
Câu 12. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.
D. − .
5
5
2
Câu 13. Giá trị của lim (3x − 2x + 1)
x→1
A. 1.
B. +∞.
C. 2.
D. 3.
Trang 1/10 Mã đề 1
12 + 22 + · · · + n2
Câu 14. [3-1133d] Tính lim
n3
1
A. .
B. +∞.
3
C. 0.
D.
2
.
3
Câu 15. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 16. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 17. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 18. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
log 2x
là
x2
1 − 2 log 2x
1
B. y0 =
.
C. y0 = 3
.
3
x
2x ln 10
Câu 20. [1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 2 ln 2x
.
x3 ln 10
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
Câu 21. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 3.
D. 0, 5.
Câu 22. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vơ nghiệm.
Câu 23. [2] Số lượng của một lồi vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
Câu 24. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 2.
Câu 25. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 7.
B. 4.
Câu 26. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Trang 2/10 Mã đề 1
Câu 27. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
x2 − 5x + 6
Câu 28. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
C. 5.
D. −1.
q
2
Câu 29. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 30. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 31. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.
√
√
√
5 13
.
B. 2.
C. 26.
D. 2 13.
A.
13
x−3 x−2 x−1
x
Câu 32. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 33. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 3.
C. 2.
D. 4.
Câu 34. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 35. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
!
1
1
1
Câu 36. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. +∞.
2
2
n−1
Câu 37. Tính lim 2
n +2
A. 1.
B. 3.
C. 0.
D. Hai mặt.
D. 2.
D. 2.
Câu 38. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.
B. −4.
C. −2.
D.
67
.
27
Trang 3/10 Mã đề 1
Câu 39. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 40. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Năm cạnh.
D. Ba cạnh.
Câu 42. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 43. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
B.
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 44. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √
√
3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Câu 45. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Câu 46. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
Câu 47. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. 10.
D. 12.
C. x = 1.
D. x = 2.
2
2
Câu 48.
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất √
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
Câu 49. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 50. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].
D. (1; 2).
Câu 51. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
Trang 4/10 Mã đề 1
Câu 52. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.
D. Không tồn tại.
Câu 53. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. −3.
D. 3.
Câu 54. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 55. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
x−3
Câu 56. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. +∞.
√
√
Câu 57. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x
√
A. 2 + 3.
B. 3.
C. 3 2.
D. (0; 2).
D. −∞.
√
D. 2 3.
Câu 58. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 59. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.
D. 7 mặt.
Câu 60. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 61. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 62. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 63. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
3
Câu 64. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .
D. e2 .
Câu 65. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
√
Câu 66. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 67. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).
√
Câu 68. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
3
D. (2; 2).
√
D. 2a3 2.
Trang 5/10 Mã đề 1
Câu 69. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
C.
.
B. a 2.
.
D. 2a 2.
A.
4
2
x+1
Câu 70. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .
D. 1.
4
3
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 40a3 .
B. 20a3 .
C.
.
D. 10a3 .
3
Câu 72. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
√
B. 3 − 4 2.
C. −3 + 4 2.
D. 3 + 4 2.
A. −3 − 4 2.
tan x + m
Câu 73. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 74. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. Cả ba mệnh đề.
Câu 75. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. (II) và (III).
D. (I) và (III).
C. 0.
D. 5.
Câu 76. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
18
6
√
Câu 77. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
D. 36.
Câu 78. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Câu 79. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C.
.
D. 18.
2
Câu 80. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√
√mặt phẳng (AIC) có diện tích
√ hình chóp S .ABCD với
2
2
2
2
a 2
a 7
a 5
11a
A.
.
B.
.
C.
.
D.
.
4
8
16
32
Trang 6/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 81. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.
B. m < 0.
Câu 82. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
log7 16
bằng
Câu 83. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.
D. 4.
8
Câu 84. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 64.
D. 81.
Câu 85. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
Câu 86. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
√
C. 9 cạnh.
D. 10 cạnh.
√
2 − 1 − 3i lần lượt √l
√
B. Phần thực là 2 −√1, phần ảo là − √3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 87. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 88. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
13
23
.
B. − .
C.
.
D.
.
A. −
100
16
25
100
Câu 89. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 15
a3 6
a3 5
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3
Câu 90. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 91. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 92. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
Câu 93. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.
2−n
Câu 94. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
!
1
D. −∞; .
2
D. m = −2.
D. 1.
Trang 7/10 Mã đề 1
Câu 95. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
12
2
Câu 96. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 10.
log2 240 log2 15
Câu 97. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
√
3
D.
.
4
D. 20.
D. 1.
Câu 98. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x
ln 2
Câu 99. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
2a3 3
5a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 100. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
D. 2.
2mx + 1
1
Câu 101. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.
x−2 x−1
x
x+1
Câu 102. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 103. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
A. f 0 (0) =
ln 10
2n2 − 1
Câu 104. Tính lim 6
3n + n4
2
D. 0.
A. 1.
B. 2.
C. .
3
Câu 105. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
π π
Câu 106. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 107. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 108. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2
n2
C. un =
n2 + n + 1
.
(n + 1)2
D. un =
1 − 2n
.
5n + n2
Trang 8/10 Mã đề 1
Câu 109. [1] Tính lim
2
A. − .
3
1 − 2n
bằng?
3n + 1
2
B. .
3
C. 1.
D.
1
.
3
Câu 110. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. a.
D. .
2
2
3
Câu 111. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 12.
D. 30.
Câu 112. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 113. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
Câu 114. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
D. {3; 4}.
C. {3; 3}.
Câu 115. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 2.
A. 1.
B. .
2
D.
ln 2
.
2
Câu 116. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. e.
Câu 117. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
5
Câu 118. Tính lim
n+3
A. 1.
B. 3.
C. 10.
D. 12.
C. 0.
D. 2.
Câu 119. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D. 1 − sin 2x.
Câu 120. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 121. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 =
.
x ln 10
x
C.
Câu 122. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
1
.
10 ln x
1
D. y0 = .
x
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 24.
D. S = 135.
Câu 123. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
8
48
24
24
Trang 9/10 Mã đề 1
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3
a 2
a 2
a 3
A.
.
B.
.
C.
.
4
12
6
Câu 126. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
n
C. lim q = 0 (|q| > 1).
D. lim = 0.
n
Câu 127. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
[ = 60◦ , S A ⊥ (ABCD).
BAD
√
D. a3 3.
D. Khối 12 mặt đều.
Câu 128. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 129. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 130. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
1. A
D
3.
4.
5. A
6. A
7. A
8. A
9. A
C
14. A
16.
B
17. A
18. A
19. A
20. A
C
21.
23.
D
B
C
29.
D
C
22.
25. A
31. A
33.
C
12. A
13.
27.
B
10.
11. A
15.
D
24.
D
26.
D
28.
D
30.
B
32.
B
34. A
B
35.
C
36.
37.
C
38.
C
D
39.
D
40.
C
41.
D
42.
C
43.
D
44.
C
46.
45. A
47.
48. A
C
49. A
50.
51.
D
53.
55.
59.
B
52. A
C
54.
B
57.
D
C
B
C
56.
B
58.
B
60.
61.
C
62.
63.
C
64.
65.
C
66.
68.
67. A
1
C
B
C
B
D
69.
70. A
C
71.
B
72.
73.
B
74. A
75.
B
77. A
78.
80.
D
B
82. A
D
B
81.
D
87.
D
B
C
89.
B
91.
92. A
94.
D
85.
88. A
90.
79.
83. A
84.
86.
C
B
96. A
B
93.
D
95.
D
C
97.
D
98.
99. A
100.
B
101.
B
102.
B
103.
B
105.
B
104.
106.
D
108.
D
110.
D
107.
B
109. A
C
111. A
112.
D
113.
C
114.
D
115.
C
116.
D
117. A
118.
119.
C
120.
D
121. A
122. A
123.
124.
D
B
125. A
126.
C
127.
128.
C
129. A
130.
B
B
2
B