Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 4 (215)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.75 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 10 cạnh.

D. 9 cạnh.

Câu 2. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.
D. {4; 3}.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 3. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.




2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 4. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 6.
D. 12.
Câu 5. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 6. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα+β = aα .aβ .

C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
d = 60◦ . Đường chéo
Câu 7. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
cos n + sin n
Câu 8. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.

D. 1.
Câu 9. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.
x+1
Câu 10. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. 1.
C. .
D. .
4
3
π
Câu 11. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.


Câu 12. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Câu 13. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 1/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 14. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).
D. (−∞; 6, 5).
√3
Câu 15. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
D. − .
A. 3.
B. −3.
C. .
3
3
x2 − 5x + 6
Câu 16. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 0.

D. 5.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 17. Tìm m để hàm số y =
x+m
A. 26.
B. 67.
C. 34.
D. 45.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 18. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 19. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
D. T = e + .
e
e


Câu 20. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 3
πa3 6
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
log7 16
Câu 21. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.

C. −2.
D. 4.
Câu 22. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.

C. 30.

D. 8.

Câu 23. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 24. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
x2 − 3x + 3
đạt cực đại tại

x−2
B. x = 3.
1
Câu 26. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
Câu 25. Hàm số y =
A. x = 0.

C. un =

n2 − 2
.
5n − 3n2

D. un =

1 − 2n
.
5n + n2

C. x = 1.

D. x = 2.

C. −1.

D. 2.


Câu 27. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.

D. 9.
Trang 2/10 Mã đề 1


Câu 28. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.

D. 2.

Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.

D. 3 mặt.

Câu 30. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15

.
B.
.
C.
.
D.
.
A.
25
25
5
3
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. e.
D. 4 − 2 ln 2.
!
1
1
1
Câu 32. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.

D. .
2
2
Câu 33. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
2
Câu 34. Tính
√ mô đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.



D. |z| =

5.

x3 −3x+3

Câu 35. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
3
2
A. e .
B. e.
C. e .

2n + 1
Câu 36. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
Câu 37. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. .
2
2
3
Câu 38. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).
5
Câu 39. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. 5.
B. 5.
C. .
5
3
x −1

Câu 40. Tính lim
x→1 x − 1
A. +∞.
B. 0.
C. −∞.

D. e5 .

D. 3.

D. −2.
D. (1; +∞).

log √a

D. 25.

D. 3.

Câu 41. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 42.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.
.
e
3

!n
5
C. − .
3

!n
1
D.

.
3
Trang 3/10 Mã đề 1


d = 120◦ .
Câu 43. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 2a.
C. 4a.
D. 3a.
A.
2
tan x + m
Câu 44. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 45. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .

9x
Câu 46. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
2−n
bằng
Câu 47. Giá trị của giới hạn lim
n+1
A. 2.
B. 0.
C. −1.
D. 1.
Câu 48. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
.
C. 2 13.
B.
D. 2.

13
Câu 49. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Câu 50. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 51. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 3.

C. 1.

D. 0.

Câu 52. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.

C. 18.
D.
.
2
Câu 53. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 54. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 55. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2

a2 + b2
a2 + b2
2 a2 + b2
Trang 4/10 Mã đề 1


Câu 56. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 57. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

C. (0; 2).

D. (−∞; 0) và (2; +∞).

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
!2x−1
!2−x

3
3
Câu 59. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 60. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
4035
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017


Câu 58. Giá trị lớn nhất của hàm số y =

Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
Câu 62. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 63. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
Câu 64. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 65. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.

D. 5.


C. 2.

Câu 66. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 67. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 8.

D. 6.

Câu 68. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.

Câu 69. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!

5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2
Trang 5/10 Mã đề 1


1
Câu 70. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).
Câu 71. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 =
.
B.
.
C. y0 = .
D. y0 =
.

x ln 10
10 ln x
x
x
Câu 72. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3
3
Câu 73. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 74. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.

A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
!vn
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 75. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
A. √
.

B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 77. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. V = 4π.
D. 8π.
Câu 78. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
2n2 − 1
Câu 79. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
D. 0.
3

Câu 80. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Trang 6/10 Mã đề 1


x
Câu 81. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
B.
.
C. 1.
D. .
A. .
2
2
2
Câu 82. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
a
5a

A.
.
B.
.
C. .
D.
.
9
9
9
9

Câu 83. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 84.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z

Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

4x + 1
bằng?
x→−∞ x + 1
A. 2.
B. 4.
x+1
Câu 86. Tính lim
bằng
x→−∞ 6x − 2
1
A. .
B. 1.
6
Câu 85. [1] Tính lim

C. −1.


1
.
2


Câu 87.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x

A. 3 2.
B. 3.
C. 2 + 3.
Câu 88. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
1

C. lim = 0.
n

C.

D.

1
.
3


D. 2 3.

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).

Câu 89. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
A. f 0 (0) =
ln 10
5
Câu 90. Tính lim
n+3
A. 2.
B. 3.
C. 0.

Câu 91. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).

D. −4.

D. f 0 (0) = 10.

D. 1.

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.

Câu 92. [4] Xét hàm số f (t) =

Trang 7/10 Mã đề 1



Câu 93. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2
Câu 94. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 1.
C.
.
2
2
Câu 95. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.

D. 2.
D. m > 0.


Câu 96. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
Câu 97. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 6).
D. (2; 4; 3).
Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.

.
12
8
4
4
Câu 99. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
1
Câu 100. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 101. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3

a 3
4a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 102. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 103. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).

D. R.

Câu 104. Khối đa diện đều loại {3; 5} có số mặt
A. 12.

B. 30.

D. 20.

C. 8.

Câu 105. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
1 − n2
Câu 106. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. .
D. − .
2
3
2
Câu 107. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

Trang 8/10 Mã đề 1


u0 (x)
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z

C.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
Câu 108. [3-1214d] Cho hàm số y =

Câu 109. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B.
.

C. 7.
D. .
2
2
2
x −9
Câu 110. Tính lim
x→3 x − 3
A. 6.
B. 3.
C. −3.
D. +∞.
 π π
Câu 111. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 112. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 113. Thể tích của khối lăng

√ trụ tam giác đều có cạnh√bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
2
4
Câu 114. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
Câu 115. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là


3
a3 3
a
3
a3
.
B.
.
C. a3 .
D.
.
A.
3
9
3
Câu 116.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
mệnh đề nào sai?
Z
Z mệnh đề sau, Z
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =

f (x)dx − g(x)dx.

Câu 117. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
2x + 1
Câu 118. Tính giới hạn lim
x→+∞ x + 1
A. 2.
B. 1.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

C. 2.

D. 24.

1
.
2


D. −1.

C.

!
!
!
1
2
2016
4x
Câu 119. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017


Câu 120. Phần thực


phần
ảo
của
số
phức
z
=
2

1

3i lần lượt√l



A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Trang 9/10 Mã đề 1


Câu 121. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.

B. 15, 36.
C. 3, 55.
D. 20.
Câu 122. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
2n − 3
bằng
Câu 123. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.

C. −∞.

D. 1.

Câu 124. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 125. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng


a 2

a 2
.
B.
.
C. a 2.
D. a 3.
A.
2
3

Câu 126. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29

29
29
3
2
Câu 127. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √

A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
D. −3 + 4 2.
Câu 128. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.

D. 6.

Câu 129. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.

3
2
x
Câu 130. [2]
2

√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3. A
5.

4.
B

C

6. A
D


7.
9.

D

8. A
10.

B
D

11.

C

12. A

13. A

14. A

15.

C

16.

17.


C

18.

19. A

B
C

20. A

21.

B

22.

23.

B

24.

25.

C

26. A

27.


C

28.

30. A

C
D
B

31.

32.

C

C

33. A

34.

B

35.

D

36.


B

37.

D

39.

D

38.

C

40.

D

41.

42.

D

43. A

44. A
46.
48.


C
B
D

52.

45.

C

47.

C

49.

50.
C

53. A
55.

56.

D

59.

60.


B

61. A

62.

B

63.

D
B
C

65. A

C

66.

C

57.

C

58.

68.


B

51. A

54. A

64.

C

D

67.
69. A

C
1

C


70.

C

72.
74.

71. A


B

73. A
75.

B

78.

76. A
79.

D
C

82. A

83.

C

84.

B
B
D

D


94.
96.
C

98.

C
B
D

100.

99. A
B

102.

103. A
B
C

107.
109.
111.

C

92. A

B


97.

105.

D

90.

95. A

101.

B

88.

91.
93.

C

86. A

87. A
89.

D

80.


81.
85.

B

104.

D

106.

D

108. A
D

110. A

B

112. A

113.

D

114.

115. A


116. A

117. A

118. A

119.

B

B

120.

C

C

121.

B

122.

123.

B

124.


C

126.

C

125. A
127.

D

B

128.

129. A

130.

2

D
B



×