Tải bản đầy đủ (.doc) (6 trang)

Đề cương ôn tập GIẢI TÍCH i

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (133.89 KB, 6 trang )


!"
#$%&'()*)
+
,-'.($,./01%-$234) 566.)7)
+
66.)8)
+
8'.9.:'()*)
+
,-'.($,./01%-$23#;
limx→xo+f(x)=limx→xo-f(x)=f(xo)
.<;=$,.$>%?%@A"




.B.;()*)
C
,-'.($,./01%-$23#;,.$
)8CD
*,.$
)8C
*4)
+

E-%Flimx→0+cosxln(x) – cosxln(x + x
2
)*,.$,1/1+x
+2)
*C


*85limx→xo-a.sinx.arccotgx= -a =0*8%*CG-fxo =0*8%*C
=> Kết luận:…
H" IJK,./01%-$23L.'.($)
C
M
C
&
limx→xolimy→yof(x,y)*limy→yolimx→xof(x,y)*lim5y→yox→xo
f(x,y)
NO9lim2 ≠lim (1)#P.Q'+L%M"
NO9lim2 =lim (1)#)JROlim3 so với lim (1)O9,.$S *,.$! *8,./0
P9<;)J,.$?-+#?T,L.+.,-U23"
)J,.$S V'WM*) ∈ R @V'WX.:)Y$Z[X
O9+4)
C
M
C
*U23#)J,.$! *,.$H *4)
C
M
C
"
G\]0!HStrang 7 Toán Học Cao Cấp 3"
S" #$^@_-$S?`)M &;
P9<,a,+.?Q,-U23@b.'L+-$
c!;=$`d)e`dM*6)J5`d)*CG-`dM*+*8Q.:$)
C
M
C
"

cH;]^%G-+c!=$`dd))e`dd)Me`ddMM@b.,a,+*f*c*"
cS;,XB)J'.($^@_

E. f c  g )J
%MQ.:$)
+
M
+
%2hFfcG-g*c 
H
if O9;
g8C'.($,-^@_
g*C'.($F(,-^'L.+W^R(9
g7C)JROf8C;'.($,-^R(9
f7C;'.($,-^'L.
 

!"#!
`d)*H)MDHe`dM*)
H

.B.:5`d)*CG-`dM*C*8jx=2x=-2G-jy=1/2y=-1/2*85M12;-12 M3-2;-12
M22;12 M4(-2;12)
%F5z''xx=2y=Az''xy=2x=Bz''yy=2x=C
XB)J'.($^@_
E. f c  g )J
E! !   HC ,-'.($^@_
EH !   !H ,-'.($^@_
ES !   !H ,-'.($^@_
E !   HC ,-'.($^@_

" #$E.E%)-$`)M .A.L@+$.'FX_W[;
c!;k9]l!6)J`d)G-`dM.B.:5z'y=0z'x=0*85y=yox=xo O,9m%
$n[%M+
cH;*8%F`)
C
M
C
*"""!
cS;k9]lH"""%F`*"""Y+!? )J`d
?
*66*C*8?*?
C
ROXAHH
c;o! H *8GM$.`*$%)`*
 $

%!

&

!

&

'()*+,- 

!

≤1
-$`)Q'_G-,./0∀ x,y∈R2/'L$%)$.@+$.'F[

I;)
H
DM
H
≤1p
%F`d)*!)iH")"H)
H
DM
H
D! *)!iH)
H
iM
H

`dM*MiH"HM"H)
H
DM
H
D! *M!i)
H
iHM
H

.B.:5z'x=0z'y=0*8j5jy=-12y=-12x=05jx=+12x=-12y=o (thỏa mãn
đk(*))*8%F5z0,-12 =z0,12 =14z0,0 =0z12,0 =z-12,0 =1 !
ckM.V%)J.Q@_1%`@/X./$.'F[
với y
2
= 1 - x
2

, ∃x∈[-1,1]|∃y∈[-1,1]
hệ z= x
2
– x
4

)J`d*H))
S
*C*8jx=0x=±12*85z±12 =14z0 =0H
P;o! H GM-$`'L$.*C$%)*!@+$.'FX_W["
" #$^@_-$!?M*4) ,-$B+2Q-$qr
c!;I;""""2%9'F'L+-$XU!@+HQP+%@.NYYHGO+WL+-$"
cH;=$.:$Ms
cS;XBX.O./
.*/'0*y=x3x2-2x1
.B.;-$M)Q'_G-,./0@/t
y'=3x2-2x+ 2x-233x2-2x=3x2-8x-33x2-2x
)Jy'=0=>jx=-13x=3
-> bảng biến thiên:
ZM-$M'L^'L.L.)*!uS'L^R(9L.)*S"
" +q6"IQ'_-$?`)M &=$]`)
C
M
C

c!;+)
+
G-M
C
%Mq'a9=$`*&

cH;G.kH,aY+H?)G-M9M(GOY+6`d)*6]) G-6`dM*6]M
cS;%M:23'n=$vc!*8`d)*`dM*
c;GM]`*`d)D`dM*%])DX]M%Xwxt
0*%
%
!
%

%
 !23'0*45!6"&5&1
c!;%M)*!G-M*!G-+qp %F`*!"
cH;G.kY+X.O)*8y)
H
])DS`
H
"`d)*`])D)DM `d)
*8cS;`d)*x+y-3z29x2-z])*-38])
^*8`dM*-58]M
c;GM]`!e! *`d)D`dM*-3/8 ])i5/8]M,-Oz9Ba=$"
" +-$23M*4) )'5)*) =$4d) G-4dd) &
M*M 
*84d) *y'(t)x'(t)*84ss) *df'(x)x'(t)P9<;{'L+-$Y+X.O"
! 
7
"780 
%
%9
%F4s) *5t4-53t2+3*84ss) *532tt2+1
|" \Kk)Q'_;
Qqq\;/$XA'.X.O'W?,.Q(đọc tham khảo GT I Trần Bình


)
a}Q'~O2QToán học Cao Cấp 2;  @HC|HCy$  + @H!C
X H!HY 4 H!SH!X H!4 H!'}•€~<•i{]‚'.X.O H!y HHC
A

*6G-
!
*,+L.G-ZHHS,.Q@HHy9R/'.X.O€V]‚•
HS!X  HSH] HSSi/$Q H!y"F$,,L.a.v
@/J,L.Y+@\A+B3.'%SC~@b.2+2Q "
y" \'ƒ] ].:K(K(Trần Bình, BT Giải Tích I, trang 351 đến 355);
P9<;ai'(]„A$….a/,†M!8H,-$9?]+FK,W,L."
!C" >]0G.kKa'~;
c!;'WX.(9>f*4)eM GA.5x=xo+ ∆xy=yo+ ∆y
cH;>]0G.k;4)M *4)+M+ D∆x.dfxx
o
,y
o
+ ∆y.dfy(x
o
,y
o
)%M23
6: (1,04)2+(2,02)3+ 7 1
.B.;c!;'Wf*x2+y3+7*4)M GA.5x=xo+ ∆xy=yo+ ∆yGA.5xo=1;
∆x=0,04yo=2; ∆y=0,02
cH;>]0G.k4)M *4)+M+ D∆x.dfxx
o
,y

o
+ ∆y.dfy(x
o
,y
o
)
]4
)
* ]4
M
*
%M23 *8f* *DCC!DCCS*C
!!" #$.A.L]‚Kk;
c'}/$;@ac#c!a!CS@%SSk91→5"
@#^;=$k‡X.O./9.uG.OG]Li/n[(xích ma) n/i=1]f(i)
a=$]L-$4>"
!H" I'.A.L,+L.!+WH;
5limx→xo+f(x)=A
limx→xo-f(x)=B∀ A,B=const.Q'+L,+L.!O9A ≠ B +WA = B ≠ f(xo)
Q@VQ{a ∃ !,.$* ±∞ O,9,+L.H"
!S" #$R:$-$$ƒX.OG-.9X.O;
-$!X.O,-$q;%G-'>X!u! )./XHu! %XuD! "
-$.9X.O;
5limt→toxt =aelimt→toyt =∞=>x=a là tiệm cận đứng.
5limt→toxt =∞elimt→toyt =b=>y=b là tiệm cận ngang.
5limt→toxt =∞G-limt→toyt =∞=>và 5limt→toy(t)/x(t)=celimt→toyt -
cx(t)=d
=>y=cx+d là tiệm cận xiên.
!" IJ2^ƒ.01%Kk29M@ƒ;
c!;=$'.($)

C
.O$l923*C+WX.(9>+)Q'_'.($X†V"
cH;;abfx =acf(x)+cbf(x)GA.)
C
∈[a;c]
cS;)Jƒ.0k#1%BHKk+"
: 0(tích phân)+∞ sinx/[căn bậc 3của x];/<=1
%Ff*0(tích phân)1 sinx/[căn bậc 3của x] +1(tích phân)+∞ sinx/
[căn bậc 3của x]*f
!
Df
H
F'.($X†V,-)*C
)Jf
!
limx→0sinx/[căn bậc 3của x] =limx→0 x/[căn bậc 3 của x]=0
*8f
!
ƒ.0!
)Jf
H
]+limx→+∞sinx/[căn bậc 3của x] =0 hội tụ/f
H
*1(tích phân)
+∞ sinx/[căn bậc 3của x] ƒ.0H
o! G-H *8O,96
!" E%) G-X) ,-HG‚XJ{,:wt G-=$PE;
NAQXBG];,.$
)8C
e

x
-1xp *!,.$
)8C
arctan xx*!limn→∞1+1n n*
Ylimx→0ln (x+1)x *!6Toán Học CC tr 93)"
%.@.(%M,+@trang 108, Trần Bình, BTGT 1
Pdd2.%,XmZcX%+XmZPX†6(trang 156, BTGT 1)
axf(t)dt=fx - fa ∀a∈R
αx =ex2 và > e-(1+x)1x?@?ABCD,CD"1
IJˆ) * e-(1+x)1x*e-e1xln (1+x)*-e( eln (1+x)x -1-1)Q]0p 
*8ˆ) *-e( ln1+x x-1)%.@.(%M,+@.)8C
*8ˆ) *-e( [0+x- x2+ ⍬x2 x]/2-1 )*ex2*‰) *8limx→0β(x)/α(x)
=1*8O,96
!" +-$234*9) G) =$4

) &
[‚=(xích ma)k=0,nCk,n u(mũ)kv(mũ)n-kŠ‹9MŒPY.Š
• P9<; N/}9,--$'%>FXm†"
\†9a^1%G) .'L+-$,a"
Z[; 

π2.*
7%
1
.B.;%F9*)
H
DH*89d*H)*89dd*He9

*C∀•S
G*2.)Dπ/2 *8G

$
*2.)Dπ/2Dmπ/2 *C.$*HD!
GM4
S
) *Ck.53 ukv53-k*C0,53 )
H
DH 2.)Dπ/2+53π/2 +C1,53 H)2.)D
π/2+26/π D C2,53 H2.)Dπ/2+51π/2)DC
*84
S
C *S"H"C"!DC*C*8O,9"""

×