Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 5 (700)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.16 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. e.

D. −2 + 2 ln 2.

Câu 3. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m < .
D. m ≤ .
4


4
4
4
Câu 4. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
2n2 − 1
Câu 5. Tính lim 6
3n + n4
2
B. 1.
A. .
3

C. 2.

D. 0.
4

Câu 6. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
2
5

A. a 3 .
B. a 3 .
C. a 3 .

√3
a2 bằng
5

D. a 8 .

Câu 7. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
Câu 8. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
cos n + sin n
Câu 9. Tính lim
n2 + 1
A. 0.
B. −∞.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
C. 12.


D. 20.

C. +∞.

D. 1.

Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
Câu 11. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 12. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 13. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 11 năm.
D. 12 năm.
Trang 1/10 Mã đề 1


[ = 60◦ , S O

Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng

2a 57
a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
19
17
19
2n + 1
Câu 15. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 3.
D. 0.
Câu 16. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.


C. 12.

Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.

D. 30.
D. Bốn mặt.

Câu 18. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 7 3.
C. 8 2.
D. 8 3.
Câu 19. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. m = −1.

Câu 20. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.

D. m = ± 3.
Câu 21. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.

Câu 22. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.

D. {3; 4}.
D. Hình tam giác.

x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).

D. (−∞; −3].
Câu 23. [4-1212d] Cho hai hàm số y =

Câu 24. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 25. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
d = 60◦ . Đường chéo
Câu 26. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
A.

.
B.
.
C.
.
D. a3 6.
3
3
3
d = 30◦ , biết S BC là tam giác đều
Câu 27. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
16

13
Trang 2/10 Mã đề 1


Câu 28. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 15
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
3
5
25
Câu 29. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.

Câu 30. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.

Câu 31. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
C.
;3 .
D. [3; 4).
A. (1; 2).
B. 2; .
2
2
Câu 32. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.

c+2
c+2
c+3

D.

Câu 33. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
e

3b + 3ac
.
c+1

D. 2e + 1.

Câu 34. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
Câu 35. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. −1.


C. 2.

Câu 36. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.
D. {5; 3}.

Câu 37. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.

B. 17 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 38. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B.
.
C.
.
D. a 2.
A. a 3.
3
2
Câu 40. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.

B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Trang 3/10 Mã đề 1


Câu 41. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 42.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4
n−1

Câu 43. Tính lim 2
n +2
A. 3.
B. 2.


a3 2
C.
.
2


a3 2
D.
.
12

C. 1.

D. 0.

Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 45. Giá trị của lim (3x2 − 2x + 1)
x→1


A. 2.

B. 3.

C. +∞.

Câu 46. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 1.
D. 7, 2.

Câu 47. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 48. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
x−3
bằng?
Câu 49. [1] Tính lim
x→3 x + 3
A. +∞.
B. −∞.


C. 4.

D. 2.

C. 0.

D. 1.

Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
3
3

a
a
a
3
2
3
.
C.
.
D.
.
A. a3 3.
B.

2
2
4
Câu 51. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 52. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 53. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 54. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e

1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

1 − 2e
.
4 − 2e
d = 120◦ .
Câu 55. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 2a.
C. 4a.
D.
.
2
D. m =

Trang 4/10 Mã đề 1



Câu 56. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln x.
B. y0 = x
2 . ln x

C. y0 =

1
.
ln 2

D. y0 = 2 x . ln 2.

Câu 57. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.
1 − 2n
Câu 58. [1] Tính lim
bằng?
3n + 1
2
2
1
B. .
C. 1.

D. − .
A. .
3
3
3
π
Câu 59. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2 3.
Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
Câu 61. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − 2 .
A. −e.
B. − .
e
e
Câu 62. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.

B. Khối tứ diện đều.

C. Khối bát diện đều.

D. m > 1.

D. −

1
.
2e

D. Khối 12 mặt đều.

Câu 63.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
Câu 64. Biểu thức nào sau đây khơng có nghĩa
A. 0−1 .
B. (−1)−1 .
Câu 65. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n

n
Câu 66. Tính lim
A. +∞.

2n − 3
bằng
2n2 + 3n + 1
B. 0.

C.

C.


−1.

−3

1
.
n

C. −∞.


D. (− 2)0 .

D.

sin n

.
n

D. 1.

Câu 67. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
6
2
3
3a
Câu 68. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng


a
a 2
a
2a
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 69. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Trang 5/10 Mã đề 1


Câu 70. Tính lim

x→+∞

A. 2.

x−2
x+3

B. −3.

Câu 71. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

2
C. − .
3

D. 1.

C. 12.

D. 10.

Câu 72. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [−1; 3].
D. [1; +∞).
12 + 22 + · · · + n2
Câu 73. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. +∞.

D. .
3
3
3
2
Câu 74. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).




Câu 75. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
4
4
Câu 76. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.

!
x+1
Câu 77. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
.
B.
.
C.
.
D. 2017.
A.
2018
2017
2018
Câu 78. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 79. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
Câu 80. Tìm giá trị lớn nhất của√hàm số y =
A. 3.
B. 2 3.


Câu 81. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.



2

C. {3; 4}.

x + 3 + 6√− x
C. 3 2.
C. 4.

2

D. {4; 3}.
D. 2 +


3.

D. 36.

Câu 82. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1

1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18
9
0 0 0
d = 300 .
Câu 83. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên

√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

a3 3
3a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 84. Trong các khẳng định sau, khẳng định nào sai?

A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Trang 6/10 Mã đề 1


Câu 85. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 86. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
A. a = (a ) .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
1
Câu 87. Hàm số y = x + có giá trị cực đại là
x
A. 2.

B. −1.
C. 1.
D. −2.
x
Câu 88.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 89. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.

B.
.
C.
.
D.
.
8
24
48
24
Câu 90. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.

1
Câu 91. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 92. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.

B. .
C. a.
D. .
2
3
2
p
ln x
1
Câu 93. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
3
3
9
0 0 0 0
Câu 94. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab

1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 95. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.

Câu 96. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.

C. log2 2020.
D. 2020.
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3

a 3
2a 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
Trang 7/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1

0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 99. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vơ số.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 100. [3] Cho hàm số f (x) = x
4 +2
2017
2017

2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 101. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
2
2
2
2

Câu 98. [3-12217d] Cho hàm số y = ln

Câu 102. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.

B. 4.

C. 144.

D. 2.

1
5

Câu 103. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).

D. D = (−∞; 1).

Câu 104. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

D. Khối bát diện đều.

C. Khối 12 mặt đều.

Câu 105. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =

A. Nếu
Z
B. Nếu

Z
C. Nếu

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

f (x)dx =

Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 106. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.

C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
x+2
bằng?
Câu 108. Tính lim
x→2
x
A. 0.
B. 1.
C. 3.

D. 2.

Câu 109. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 110. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 111. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
Trang 8/10 Mã đề 1



(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.
Câu 112. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
Câu 113. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. Câu (III) sai.

D. Câu (I) sai.

C. 8.

D. 10.

C. 8.

D. 6.

Câu 114. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
1 + 2 + ··· + n

Câu 115. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
x+2
Câu 116. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vơ số.
C. 2.
D. 3.
Câu 117. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 118. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.


Câu 119. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
36
6
6
18
8
Câu 120. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.

Câu 121. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 26.
.
C. 2.
B.
D. 2 13.
13
Câu 122. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
Câu 123.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =

A.


f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Trang 9/10 Mã đề 1


Câu 124. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2

log2 240 log2 15

+ log2 1 bằng
Câu 125. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam
Câu 126. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là

√ tích khối chóp S .ABC
a3 2
a3 3
a3 3
.
B.
.
C.
.
A.
24
24
12

Câu 127. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng


1
A. .
B. 25.
C. 5.
5
Câu 128. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.
2−n
Câu 129. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 2.

1
D. V = S h.
3

D. 3.
giác đều cạnh a và (S AB) ⊥

D. 2a2 2.

D. 5.
D. m , 0.
D. 0.


Câu 130. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
.
B. 2a 6.
C. a 6.
D. a 3.
A.
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

C
C

3.


D

4.

5.

D

6.

7. A

8.

9. A

10.

11.

C
D

12.

C

13.

B


D

C

14. A

15. A

16.
D

17.

18. A

19.

C

20. A

21.

C

22.

23.


C

D

D

24. A

25. A

26.

D

27.

D

28.

D

29.

D

30.

D


31.
33.

C

32.

B

35. A
37.

D

34.

D

36.

D

38.

B

40. A

C


39.

B

41.

D

42.

D

43.

D

44.

D

45. A

46.

C
C

47.

C


48.

49.

C

50.

51.
53.

D

52. A
54.

B

55.

B

D

B

56.

D

D

57.

C

58.

59.

C

60.

B
B

61.

D

62.

63.

D

64. A

65.


B

66.
68.

67. A
1

B
D


70.

C

69.
71.

B

72.

73.

B

74.


75.

B

76. A

79.

C

80.

81.

C

83.

84.

B

85. A

86.

B

87.
D


88.

89.

90.

C

91.

92.

C

93.

D
D
C
D
D
B
C
D

95.

B


C
D

97.

96. A
98.

99.

C

100.

D
C

103.

104.

C

105.

106.

C

107. A

D

108.

B

101.

102.

110.

B

78.

77. A

94.

D

D
C
B
D

109.

B


111. A

112.

C

113.

D

114.

C

115.

D

116.

C

117.

118.

C

119.


120.

C

121.

122.

D

B
D

125. A
127.

B

128.
130.

D

123.

B

124.
126.


C

D

129. A

C

2

B



×