Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 1. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 2. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2
Câu 4. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 5. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.
Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 7. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R \ {0}.
x−2 x−1
x
x+1
Câu 8. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
Câu 10. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 11. Tính lim
x→+∞
A. 1.
x−2
x+3
B. 2.
2
C. − .
3
D. −3.
1
Câu 12. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Trang 1/10 Mã đề 1
Câu 13. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. −e.
D. − .
A. − 2 .
e
e
2e
Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 13 năm.
D. 12 năm.
Câu 15. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).
n−1
Câu 16. Tính lim 2
n +2
A. 0.
B. 2.
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
C. 1.
D. 3.
2
Câu 17. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 18. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 19. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
Câu 20. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Chỉ có (II) đúng.
D. Cả hai câu trên đúng.
C. Khối bát diện đều.
D. Khối tứ diện đều.
√
Câu 21. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
a 38
3a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 22. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
√
Câu 23. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. 2a 2.
B. V = 2a .
C. V = a 2.
D.
.
3
Trang 2/10 Mã đề 1
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 25. Hàm số nào sau đây khơng có cực trị
x−2
.
A. y = x3 − 3x.
B. y =
2x + 1
2n + 1
Câu 26. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. y = x4 − 2x + 1.
1
D. y = x + .
x
C. 0.
D. 1.
Câu 27. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
2
1−n
Câu 28. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
2
2
3
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 29. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 30. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 31. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.
D. m > −1.
Câu 32. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).
D. (1; +∞).
Câu 33. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3
√
a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 35. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 36. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
Câu 37. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (1; −3).
D.
ln 2
.
2
D. (0; −2).
Trang 3/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 38. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Câu 39.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
2
6
12
4
Câu 40. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. −∞; − .
C. − ; +∞ .
D. −∞; .
2
2
2
2
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. 2.
D. Vô số.
Câu 41. [4] Xét hàm số f (t) =
Câu 42. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Hai cạnh.
D. Ba cạnh.
Câu 43. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
√
3
3
3
a 3
a 3
a
.
B.
.
C.
.
D. a3 .
A.
3
9
3
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
a3 2
a3 6
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
48
16
48
24
Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
Câu 46. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 47. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
0 0 0 0
0
Câu 48.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
2
7
3
mx − 4
Câu 49. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
Câu 50. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
0 0 0 0
Câu 51. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
Trang 4/10 Mã đề 1
Z
Câu 52. Cho
1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 1.
Câu 53.
A. 0.
Câu 54.
A. −3.
1
.
2
x2 − 5x + 6
Tính giới hạn lim
x→2
x−2
B. 1.
x2 − 9
Tính lim
x→3 x − 3
B. +∞.
B.
1
.
4
C. 0.
D.
C. 5.
D. −1.
C. 3.
D. 6.
Câu 55. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
B. a 2.
C.
.
D.
.
A. 2a 2.
2
4
Câu 56. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 57. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 58. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Câu 59. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
un
Câu 60. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 61. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
Câu 62. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
8
Câu 63. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 81.
D. 64.
Câu 64. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 6.
D. V = 4.
Câu 65. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 66. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 5/10 Mã đề 1
Câu 67. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
Câu 68. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 69. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
C. 12.
D. 6.
Câu 70. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C.
.
D. −7.
27
√
√
4n2 + 1 − n + 2
Câu 71. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Câu 72. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 73. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 74. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. m =
1 + 2e
.
4 − 2e
D. Khối tứ diện đều.
Câu 76. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 77. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
a3 3
a3 3
a3 6
2a3 6
.
B.
.
C.
.
D.
.
A.
9
2
4
12
Câu 78. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
D. 2.
Câu 79. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 80. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12
24
6
Câu 81.
!
Z Các khẳng định nào sau
Z đây là sai?
Z
0
A.
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Trang 6/10 Mã đề 1
Câu 82. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 18.
B. 27.
C. 12.
D.
2
1 − 2n
bằng?
Câu 83. [1] Tính lim
3n + 1
1
2
2
A. .
B. 1.
C. − .
D. .
3
3
3
Câu 84. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
Câu 85. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. log2 13.
D. 13.
Câu 86. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
√
A. 7 3.
B. 8 2.
C. 16.
D. 8 3.
Câu 88. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 89. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.
D. Ba mặt.
x+3
nghịch biến trên khoảng
Câu 90. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
2
x − 12x + 35
Câu 91. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. .
C. −∞.
D. − .
5
5
Câu 92. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
Câu 93. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 95. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 96. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
Trang 7/10 Mã đề 1
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
C. Khơng có câu nào D. Câu (II) sai.
sai.
π π
Câu 97. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
Câu 98. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
C. a 3.
A. a 6.
B.
D. 2a 6.
2
Câu 99. Dãy số nào có giới hạn bằng 0?
!n
!n
n3 − 3n
6
−2
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
n+1
5
3
Câu 100. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
x2
Câu 101. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
A. M = e, m = .
e
e
Câu 102. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 103. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 104. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 105. Cho
x2
1
A. 0.
B. 1.
C. −3.
D. 3.
Câu 106. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 107. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
Câu 108. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
3
2
Trang 8/10 Mã đề 1
Câu 109. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 3.
D. 2.
Câu 110. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
Câu 111. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
√
x2 + 3x + 5
Câu 112. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. − .
A. 1.
B. 0.
C. .
4
4
Câu 113. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
1
Câu 114. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = R.
Câu 115. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 116. Tính lim
x→2
A. 1.
x+2
bằng?
x
B. 3.
C. 0.
D. 2.
Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
√
3
√
2a
3
a 3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3
6
3
Câu 118. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 5 mặt.
Câu 119. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 120. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S
√ BC) bằng
√ với mặt đáy và S O = a.
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 122. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
1
bằng
Câu 123. [1] Giá trị của biểu thức log √3
10
1
1
A. − .
B. 3.
C. −3.
D. .
3
3
Trang 9/10 Mã đề 1
Câu 124. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 125. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
Z 3
x
a
a
Câu 126. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 16.
D. P = 28.
Câu 127. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
α α
α
α+β
α β
A. a b = (ab) .
B. a = a .a .
C. β = a β .
D.
a
2n + 1
Câu 128. Tính giới hạn lim
3n + 2
1
3
A. .
B. 0.
C. .
D.
2
2
1
Câu 129. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D.
aαβ = (aα )β .
2
.
3
2.
Câu 130. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
3.
B
4. A
5.
D
6.
7. A
8. A
9. A
10. A
11. A
12.
D
13.
B
B
D
14.
15. A
17.
D
2.
16. A
18.
B
D
B
20.
D
21. A
22.
D
23. A
24.
B
26.
B
28.
B
19.
25.
B
27.
D
29.
C
31.
D
33. A
30.
C
32.
C
34.
35.
D
36. A
37.
D
38.
39.
C
40.
41.
C
42.
B
D
C
D
43. A
44. A
45. A
46.
D
48.
D
47.
D
49.
B
50. A
52.
B
53.
54.
D
56.
58.
64.
C
57.
C
B
59.
60.
62.
55.
D
D
D
C
61. A
63.
C
D
C
65.
66. A
67. A
68. A
69.
1
D
C
70. A
71. A
72. A
73.
C
75.
C
74.
C
76.
78.
77.
D
D
79.
B
C
80. A
81.
82. A
83.
C
85.
C
C
D
84.
D
86.
B
87.
88.
B
89.
B
B
90.
C
91.
92.
C
93.
94.
C
95.
96.
C
97.
98. A
C
B
D
99.
C
100.
B
101.
102.
B
103.
C
105.
C
104.
C
106.
D
D
107.
D
108.
B
109.
110.
B
111.
D
113.
D
115.
D
117.
D
119.
D
112.
D
114. A
D
116.
118.
B
D
120.
B
121. A
122. A
123. A
124.
B
125.
C
126.
B
127.
C
128.
D
130.
D
129. A
2