Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 7 (3)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.16 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 2. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 3. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.


C. Không có câu nào D. Câu (I) sai.
sai.
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 5. [3-12217d] Cho hàm số y = ln
xy + 1
0
y
0
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 6. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 7. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
x+1
Câu 8. Tính lim
bằng
x→+∞ 4x + 3
1

1
A. .
B. 1.
C. .
D. 3.
4
3
Câu 9. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. Cả ba mệnh đề.

Câu 10. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. −∞; − .
2
2

2

D. (I) và (III).
!
1
D. − ; +∞ .
2
Trang 1/11 Mã đề 1


Câu 11. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 12. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 3.

D. 4.

Câu 13. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một

nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 14. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
a 3
a3
a 3
.
C.
.
D.
.
A. a3 .
B.
9
3
3
 π
Câu 15. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



1 π3
2 π4
3 π6
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Câu 16. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 17. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 18. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15

a3 5
a3
a3 15
A.
.
B.
.
C.
.
D.
.
5
25
3
25
Câu 19. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
Câu 20. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e + 1.
e


D. 2e.
Trang 2/11 Mã đề 1


4x + 1
Câu 21. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D. −1.
!
1
1
1
Câu 22. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 2.
D. 0.
2
Câu 23. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng

(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
a2 5
a2 7
11a2
a2 2
.
B.
.
C.
.
D.
.
A.
4
16
8
32
Câu 24. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
1 − n2
bằng?
Câu 25. [1] Tính lim 2
2n + 1

1
1
1
B. .
C. − .
D. 0.
A. .
3
2
2
Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
x

Câu 27. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 28. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.
C. 3.
D. 5.
Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 2.

Câu 30. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.

B. −2.
C. −4.

D. 1.
D. 2.

Câu 31. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 32. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

D. [6, 5; +∞).

Câu 33. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 1134 m.
D. 2400 m.
2

Trang 3/11 Mã đề 1


Câu 34. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 35. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
12 + 22 + · · · + n2
Câu 36. [3-1133d] Tính lim
n3
1
2
B. .
C. 0.
D. +∞.
A. .
3
3
Câu 37. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
log7 16
Câu 38. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.

B. 2.
C. 4.
D. −2.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a
3
a
2
a
3
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
x2 − 12x + 35
Câu 40. Tính lim

x→5
25 − 5x
2
2
D. − .
A. +∞.
B. −∞.
C. .
5
5
log 2x
Câu 41. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
0
0
.
B. y0 =
.
D.
y
=
.
A. y0 = 3
.
C.

y
=
2x ln 10
x3
x3 ln 10
2x3 ln 10
Câu 42.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
1
4
5
5
.
B.
.
C. − .
D.
.
A.
3
3
3
e
Câu 43. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?

A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
!
3n + 2
2
Câu 44. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
x+1
Câu 45. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
1

ln x p 2
Câu 46. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
9
3
9
Câu 47.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
A.

k f (x)dx = k

f (x)dx, k là hằng số.

B.


f (x)dx = F(x) + C ⇒

f (t)dt = F(t) + C.

Trang 4/11 Mã đề 1


Z
C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C. D.

Câu 48. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

!0

Z

f (x)dx = f (x).

C. 30.

D. 12.


Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 3
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
16
24
48

x2 + 3x + 5
Câu 50. Tính giới hạn lim
x→−∞
4x − 1
1
1

C. − .
D. 0.
A. 1.
B. .
4
4
0 0 0 0
0
Câu 51.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
7
3
2
1
Câu 52. [1] Giá trị của biểu thức log √3
bằng

10
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
x2 − 3x + 3
Câu 53. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 2.
C. x = 1.
D. x = 0.
Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
b a2 + c2
c a2 + b2
abc b2 + c2
A. √
.

B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
d = 300 .
Câu 55. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ khối lăng trụ đã cho.
√ CC = 3a. Thể tích V 3của
3

3a 3
a 3
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
A. V =
2
2
Câu 56. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 57. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
.
B.
.
C.
.
D. 2a2 2.
A.
24
12
24
Câu 58.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z

C.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

( f (x) − g(x))dx =

B.
Z
D.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.
Z
g(x)dx.

Câu 59. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.

B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 6.
Trang 5/11 Mã đề 1


Câu 60. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + .
D. T = e + 1.
A. T = e + 3.
B. T = 4 + .
e
e

Câu 61. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
A.
.
B.

.
C.
.
D.
.
29
29
29
29
Câu 62. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình tam giác.
D. Hình lăng trụ.
Câu 63. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
x+3
Câu 64. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. 3.
D. Vô số.
Câu 65. Tứ diện đều thuộc loại
A. {3; 3}.

B. {4; 3}.

C. {5; 3}.

Câu 66. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. {3; 4}.
D. 1 + 2 sin 2x.

Câu 67. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
.
B. 2a 6.
A.
C. a 3.
D. a 6.
2
2n − 3
Câu 68. Tính lim 2
bằng
2n + 3n + 1
A. +∞.

B. 0.
C. 1.
D. −∞.
q
2
Câu 69. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 70. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B.
.
C. 2.
D. 1.

3
Câu 71. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC√là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
4
2
9
x−2 x−1
x
x+1
Câu 72. [4-1212d] Cho hai hàm số y =
+
+

+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Trang 6/11 Mã đề 1


[ = 60◦ , S A ⊥ (ABCD).
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 2
a 3
.
B.
.
C.

.
D. a3 3.
A.
6
12
4
Câu 74. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
C.
.
D. 2a 2.
A.
2
4

2
Câu 75. Xác định phần ảo của số

√ phức z = ( 2 + 3i)
C. −6 2.
D. −7.

A. 7.
B. 6 2.
Câu 76. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
Câu 77. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 78. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
√3
Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng

1
ab
ab
1
.
D. √
.
B. √
.
C. 2
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 81. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. +∞.

C. 2.

D. 3.

Câu 82. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.

B. ln 14.
C. ln 12.
D. ln 10.
Câu 83. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 84. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 85. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).

D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a


Câu 86. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
x→a

Trang 7/11 Mã đề 1


Câu 87. Dãy! số nào có giới hạn bằng 0?
n
6
A. un =
.
B. un = n2 − 4n.
5

!n
−2
C. un =
.
3

D. un =

n3 − 3n
.
n+1


1 3
x − 2x2 + 3x − 1.
3
C. (1; +∞).
D. (−∞; 1) và (3; +∞).

Câu 88. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

B. (−∞; 3).

Câu 89. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 90. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




3
4a3 3
a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 91. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 3.
D. 5.
n−1
Câu 92. Tính lim 2
n +2
A. 1.
B. 0.
C. 2.
D. 3.

Câu 93. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 216 triệu.
D. 210 triệu.
1 − 2n
bằng?
Câu 94. [1] Tính lim
3n + 1
2
B. 1.
A. − .
3
Câu 95. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C.

2
.
3

C. 8.

D.


1
.
3

D. 4.

Câu 96. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 97. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.

C. y0 = 1 − ln x.

Câu 98. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).

D. y0 = ln x − 1.
D. [1; 2].


Câu 99. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 100. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. −e.
C. − .
e
2e

1
D. − .
e
Trang 8/11 Mã đề 1


Câu 101. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2

cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 1.
D. 0.
Câu 102. [4] Xét hàm số f (t) =

Câu 103. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vô số.
D. 2.
 π π
Câu 104. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
[ = 60◦ , S O
Câu 105. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
2a 57
a 57

.
B.
.
C. a 57.
D.
.
A.
19
17
19
Câu 106. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) xác định trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 107. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 108. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −2.
A. −4.
B. −7.
C.
27
Câu 109. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
A.
.
B. 34.
C. 68.
D. 5.
17
Câu 110. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.
D. Nhị thập diện đều.
Câu 111. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
Câu 112. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.

C. m = −2.
!2x−1
!2−x
3
3
Câu 113. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].

D. m =

1 + 2e
.
4 − 2e

D. m = −1.

D. [1; +∞).

Câu 114. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
Trang 9/11 Mã đề 1



ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3

Câu 116. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 30.
D. 12.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 117. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 0.
2
Câu 118.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 119. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.

B. m ≥ 0.
C. m > − .
D. − < m < 0.
4
4
Câu 120. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .


−3
C. 0−1 .
D.
−1.


Câu 121. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 122. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là



3
3
a3 3
a
a
3
A.
.
B. a3 .
C.
.
D.
.
2
3
6
Câu 123. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.


C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.
Trang 10/11 Mã đề 1


Câu 124. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 125. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 126. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 127. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.

D. m > 3.
2
x
Câu 128. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
A. M = , m = 0.
e
e
Câu 129. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 12 cạnh.
x+2
đồng biến trên khoảng
Câu 130. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. 3.
D. Vô số.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

C

3.

C

4.

C

5.

C

6. A

7. A

8. A


9. A

10.

11. A

12.

13.

C

14.

D

15.

B

16.

17.

B

18.

19. A

21.

D
D
B
D

20. A
22.

B

23.

C

24.

25.

C

26. A
D

27.

B
C


28.

B

30.

B

32.

B

33. A

34.

B

35. A

36.

B

C

29.
31.

B


37.

38. A

C

39.

D

41.

40.
42.

C

43. A
45.

46.

B
C

48.
D

49.

C

52.

53.

C

54. A

B
C
B

56.

B

57. A
61.

D

50.

51.

59.

B


44. A

47.

55.

C

D

58.
B

C

60. A
62.

C

63. A

64.

C

65. A

66. A


67.

C

D

68.
1

B


69.

D

72. A

71. A
C

73.
75.

74. A
76.

B


77.

D

81.

C
B

B

82.

B

84.

B

C

86.

87.

C

88.

B


92.

93. A

94. A
B

98.

99.

B

100.

101.

B

102.

103.

D

104. A

105.


D

106.

107.

D

108.

109. A

110.
D

114.

115.

C

116.

117.

C

118. A

119.


C

120.

121.

C

122. A

123. A

B

B
C
B
C
D
B
C
B
D
C

124.
126.

B


127.
129.

C

112.

B

113.

125.

D

96. A

97. A

111.

C

90.

91. A
95.

C


80.

85.
89.

B

78.

79. A
83.

C

70.

128.

C
B

130. A

2

C
B
D




×