Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (65)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.89 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
x−1
y
z+1
Câu 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 3. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 13.
B. log2 13.
C. log2 2020.
D. 2020.


Câu 4. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.

D. 5.

Câu 5. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

D. 8.

2

C. 6.

Câu 6. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.
Câu 7. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 2.
B.
.
C. 1.
2

Câu 8. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.

D.

1
.
2

1
Câu 9. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 10. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Thập nhị diện đều.

D. Tứ diện đều.

Câu 11.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 12. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. 7.
D. .
A.
2
2
x
x
Câu 13. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Trang 1/10 Mã đề 1


Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban

đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 13 năm.
d = 30◦ , biết S BC là tam giác đều
Câu 15. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
Câu 16. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ

ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3
Câu 17. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn

C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 18. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 19. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
Câu 20. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
x

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 21. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 22. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (0; 2).
Trang 2/10 Mã đề 1


Câu 23. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 24. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 216 triệu.
D. 220 triệu.
x+1
bằng
Câu 25. Tính lim
x→+∞ 4x + 3
1
A. .
B. 1.
3

C. 3.

D.

1
.
4

Câu 26. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5; 2}.
D. {5}.
Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O

đến (S AB)
√ bằng



a 6
.
B. a 3.
C. a 6.
D. 2a 6.
A.
2
2

Câu 28. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.

D. 8.

[ = 60◦ , S A ⊥ (ABCD).
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là

a3 3
a3 2
a3 2

3
.
B.
.
C. a 3.
.
A.
D.
12
6
4
Câu 30. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 1.
C. 3.
D. .
A. .
2
2
d = 300 .
Câu 31. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

3a 3

a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 32. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.
Câu 33. [1-c] Giá trị của biểu thức
A. 2.

B. −2.

log7 16
log7 15 − log7

15
30

D. {4; 3}.

bằng
C. −4.


D. 4.

Câu 34. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 8, 16, 32.
tan x + m
Câu 35. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Trang 3/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 3.


Câu 36. [1-c] Giá trị biểu thức
A. 1.

D. 4.

Câu 37. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.

D. {3; 4}.

x3 − 1
Câu 38. Tính lim
x→1 x − 1
A. −∞.
B. 3.

C. +∞.

D. 0.

Câu 39. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.

C. 10.

D. 8.


Câu 40. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 41. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 43. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2


C. un =

n2 − 2
.
5n − 3n2


2
Câu 44. Thể tích của khối lập phương

cạnh
bằng
a

3


2a 2
B.
A. V = a3 2.
.
C. 2a3 2.
3

D. un =

n2 − 3n
.
n2


D. V = 2a3 .
 π π
Câu 45. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
Câu 46. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3
Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 48. Tứ diện đều thuộc loại
A. {5; 3}.

B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 49. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Câu 50. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Trang 4/10 Mã đề 1






− 3m + 4 = 0 có nghiệm
3

3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
q
Câu 52. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
x−3
Câu 53. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. −∞.
D. 0.
x+1
bằng
Câu 54. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.

B. .
C. .
D. .
3
2
6
Câu 51. [12215d] Tìm m để phương trình 4 x+
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4

1−x2

− 4.2 x+

1−x2

Câu 55. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 7.

C. 9.

2
Câu 56. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √

C. |z| = 5.
A. |z| = 5.
B. |z| = 2 5.

D. 5.
D. |z| =

√4
5.

Câu 57. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 58. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.

Câu 59. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
D. 36.
Câu 60. Giá trị của lim(2x2 − 3x + 1) là
x→1


A. 2.

B. 0.

C. +∞.

D. 1.

Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
4
2

1 − n2
Câu 62. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
2
3
Câu 63. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25

25
5
3
Câu 64. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.

D. 3 mặt.
x+2
Câu 65. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Trang 5/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.

Câu 66. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.


B. m ≤ 0.

Câu 67. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 68.
! định nào sau đây là sai?
Z Các khẳng
0

Z

f (x)dx = f (x).

A.
Z
C.

B.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C. D.

Z


k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

π
Câu 69. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.
1

Câu 70. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R \ {1}.

D. D = R.

−2x2


Câu 71. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
B.
.
A. 2 .
e
2e3

trên đoạn [1; 2] là
1
2
C. √ .
D. 3 .
e
2 e
!
!
!
4x
1
2
2016
Câu 72. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017

2017
2017
2016
.
C. T = 2016.
D. T = 1008.
A. T = 2017.
B. T =
2017


Câu 73. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 3 2.

C. 2 3.
D. 3.
Câu 74. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 75. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
!x
1

Câu 76. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. log2 3.
B. − log2 3.
C. − log3 2.
D. 1 − log2 3.
Câu 77. Tìm giới hạn lim
A. 1.

2n + 1
n+1
B. 0.


C. 2.

D. 3.

Câu 78. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
C. 6 3.
D.
.
3
3
Câu 79. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.

D. 2.
Trang 6/10 Mã đề 1



Câu 80. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 15
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 81. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Câu 82. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
1
Câu 83. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 1.
D. 3.
Câu 84. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

!n
−2
C. un =
.
3

!n
6
D. un =
.

5

Câu 85. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.

C. 2.

D. 3.

Câu 86. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 87.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2
a3 2
A.
.
B.
.
C.

.
D.
12
2
6
Câu 88. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
1
3
A. 1.
B. .
C. .
D.
2
2
Câu 89. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.
D.
Câu 90. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+1

c+2
c+3
Câu 91. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
A.
.
B. .
C.
.
10
5
10
Câu 92. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R \ {0}.


a3 2
.
4

3
.
2
Hình lập phương.


3b + 3ac
.
c+2
kệ dài. Tính xác suất để hai
D.

D.

1
.
5

D. D = R.

Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 94. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).

D. (−1; −7).

Câu 95. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

A. 27.
B. 12.
C. 18.
D.
.
2
Trang 7/10 Mã đề 1


Câu 96.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.

Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 97. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 5.
A. 5.
B. .
D. 25.
5
!
5 − 12x
Câu 98. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.


Câu 99. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
! x3 −3mx2 +m

1
nghịch biến trên
Câu 100. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 101. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

Câu 102. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.
cos n + sin n
Câu 103. Tính lim
n2 + 1
A. 0.
B. +∞.

C. (I) và (III).


D. (II) và (III).

C. 10.

D. 20.

C. 1.

D. −∞.

Câu 104. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 105. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √

.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x2
Câu 106. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = e, m = 0.
D. M = , m = 0.
e
e
Trang 8/10 Mã đề 1


Câu 107. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.


Câu 108. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
a 3
4a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 109. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 110. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0

(AB0C) và

√ (A C D) bằng


a 3
2a 3
a 3
.
B. a 3.
.
D.
.
A.
C.
2
2
3
Câu 111.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
3
2
x
Câu 112. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ± 3.

B. m = ±1.
C. m = ± 2.
D. m = ±3.
2

Câu 113. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

Câu 114. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 115. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
A. f 0 (0) =
ln 10

D. f 0 (0) = ln 10.

Câu 116. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. a 2.
.
A.
C. 2a 2.
D.
2
4
Câu 117. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu

f (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z

0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 118. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x)g(x)] = ab.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b
Trang 9/10 Mã đề 1




Câu 119. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 120. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
1
Câu 121. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 122. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.

D. 3, 55.
Câu 123. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.

Câu 124. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 125. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
Câu 126. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.

B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e
Câu 127. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 8.

D. m =

1 + 2e
.
4e + 2

D. 10.

Câu 128. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
Câu 129. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.


D. 0.

Câu 130. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
A.
.
B.
.
C. −
.
D. − .
100
25
100
16
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.


4. A

B

5.

8.

9. A

10.
C
D

16.

17.

D

18.

19.

B

20. A

21.


B

22.

23. A

24.

25.
C

29.

32.
C
C

B
D
D
B

36.

B

38.

B


41.

B

42. A

43.

B

44.

47.

C

40.

D

45.

C

34. A

B

39.


B

30.

D

37.

C

28. A

31. A
35.

D

26.

D

33.

C

14.

15.

27.


B

12.

B

13.

D

6.

C

7. A
11.

C

2.

D
C

46. A

C
B


48.

C

49.

D

50.

51.

D

52.

D

53.

D

54.

D

56.

D


58.

D

55.
57.

C
B

59. A
61.

60.
D

B

62. A

63. A

64.

65. A

66. A

67.


B

D

68.
1

C
C


69. A

70.

71. A

72.

73.

B

D
C

74.

75.


D

76.

77.

C

78.

79.

C

80.

81.

D

83.

B

B
C
D

82. A
84.


C

85. A

86.

C

87. A

88. A

C

90.

D

91. A

92.

D

93. A

94. A

89.


B

95.

C

97.

D
C

96.

C

98.

C

100.

B

101. A

102.

B


103. A

104.

99.

105.

B

106.

107.

B

108.

109.
111.

B

114.

115.

D

116. A


D
C
D

118.

117. A

D

120.

C

121. A
C

B

124.

B

126. A

127. A

128.
D


130.

2

C

122.

125. A
129.

B

112.
D

123.

C

110.

C

113.

119.

D


B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×