TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1
D. +∞.
x = 1 + 3t
Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t
A.
.
B.
C.
y=1+t
y = 1 + 4t .
y = −10 + 11t . D.
y = −10 + 11t .
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
A. 2.
B. 3.
Câu 3. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 1.
C. 20.
D. 8.
Câu 4. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B.
.
C. 26.
D. 2 13.
A. 2.
13
√
Câu 5. Xác định phần ảo của số phức
z
=
(
2 + 3i)2
√
√
A. −7.
B. −6 2.
C. 7.
D. 6 2.
Câu 6. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
3
1
3
A. .
B. .
C. 1.
D.
.
2
2
2
tan x + m
Câu 7. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
1
bằng
Câu 8. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
1
Câu 9. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 2.
D. 1.
Câu 10. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. (−∞; −3].
D. [−3; 1].
Câu 11. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Trang 1/10 Mã đề 1
!
5 − 12x
Câu 12. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 13. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a 3
a 2
a 3
B.
.
C.
.
D.
.
A. a3 3.
2
2
4
Z 1
Câu 15. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 0.
Câu 16.
1
A. .
2
Câu 17.
A. 2.
1
1
.
D. .
4
2
[2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
B. .
C. 4.
D. .
4
8
2n + 1
Tìm giới hạn lim
n+1
B. 3.
C. 1.
D. 0.
B. 1.
C.
Câu 18. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
Câu 19. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.
D. 12.
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 9.
D. .
A. 6.
B. .
2
2
Câu 21. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
2
2
Câu 22. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 23. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
D. 2e.
e
Câu 24. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
Câu 25. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
2n2 − 1
Câu 26. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. .
3
3
x→a
2
D. (−1; −7).
D. 2.
Trang 2/10 Mã đề 1
Câu 27. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.
Câu 28. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. +∞.
C. 3.
D. 6.
D. −∞.
Câu 29. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
D.
.
A. a 3.
B. a 2.
C.
3
2
9t
Câu 30. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.
5
Câu 31. Tính lim
n+3
A. 2.
B. 1.
C. 0.
D. 3.
Câu 32. Cho
√
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
Câu 33. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Câu 34. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 35. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 36. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.
2−n
bằng
n+1
B. −1.
D. Không tồn tại.
Câu 37. Giá trị của giới hạn lim
A. 1.
C. 0.
2
Câu 38. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. 2.
D. |z| =
√4
5.
Câu 39. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
loga 2
log2 a
Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Trang 3/10 Mã đề 1
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
16
48
Câu 42. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.
D. 4 mặt.
Câu 43. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 44. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
n
5n + n2
n2
2x + 1
x→+∞ x + 1
B. −1.
C. un =
n2 − 2
.
5n − 3n2
D. un =
n2 + n + 1
.
(n + 1)2
Câu 45. Tính giới hạn lim
1
.
2
Câu 46. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
A. 2.
C.
D. 1.
Câu 47. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. a.
D. .
2
3
2
Câu 48. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
A. un =
.
B. un =
.
5
3
C. un =
n3 − 3n
.
n+1
D. un = n2 − 4n.
Câu 49. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 50. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D. R.
Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.
√
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 52. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 53. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 4/10 Mã đề 1
Câu 54. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (I) và (II).
D. (II) và (III).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 55. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
Câu 56. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
Câu 57. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
Câu 58. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 2.
D. 3.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a 2
a
A. .
B.
.
C.
.
D. .
3
3
3
4
1
Câu 60. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
2
2
2
1 + 2 + ··· + n
Câu 61. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. +∞.
D. .
3
3
Câu 62. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a, S D =
Câu 63. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
1
Câu 64. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 65. Giá trị của lim(2x2 − 3x + 1) là
x→1
B. +∞.
C. 2.
!2x−1
!2−x
3
3
Câu 66. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
A. 1.
D. 0.
D. (+∞; −∞).
Trang 5/10 Mã đề 1
Câu 67. Cho I =
Z
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.
D. P = 28.
√
Câu 68. [4-1228d] Cho phương trình
x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 64.
D. 62.
(2 log23
Câu 69. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
6
24
Câu 71. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
x2 − 9
Câu 72. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. +∞.
D. −3.
Câu 73. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 74. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a3 3
5a3 3
a3 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 75. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.
D. 0, 8.
1
Câu 76. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 77. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 2; m = 1.
D. M = e−2 − 2; m = 1.
Câu 78.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
6
12
4
Câu 79. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Trang 6/10 Mã đề 1
Câu 80. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 2.
Câu 81. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.
3
Z
6
3x + 1
C. 4.
D. −1.
C. 5.
D. 4.
. Tính
1
f (x)dx.
0
Câu 82. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 83. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 84. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R \ {0}.
Câu 85. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
6
15
18
x
Câu 86. [1] Đạo hàm của hàm số y = 2 là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
A. y0 = x
2 . ln x
ln 2
Câu 87. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 88. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 89. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 24.
D. 22.
Câu 90. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 91. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
x+1
Câu 92. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3
Câu 93. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.
D. 3.
√
Câu 94. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Trang 7/10 Mã đề 1
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. 2.
C. −1.
D. .
2
!
3n + 2
Câu 96. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 95. [2-c] Cho hàm số f (x) =
Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
C. lim [ f (x) − g(x)] = a − b.
x→+∞
B. lim [ f (x)g(x)] = ab.
x→+∞
D. lim
x→+∞
f (x) a
= .
g(x) b
Câu 98. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
D. m > 0.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 99. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
q
2
Câu 100. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 101. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (III) sai.
C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 102. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
C. (0; +∞).
D. (0; 2).
2
Câu 103. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.
D. 1 − log3 2.
Câu 104. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 105. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 8 m.
D. 16 m.
Câu 106. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.
D. m > −1.
Trang 8/10 Mã đề 1
Câu 107. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 108. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
C. 30.
D. 20.
d = 60◦ . Đường chéo
Câu 109. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 110. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
√
Câu 111. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.
D. 6.
!
1
1
1
+
+ ··· +
Câu 112. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 0.
D. 1.
2
Câu 113. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
log7 16
bằng
Câu 114. [1-c] Giá trị của biểu thức
15
log7 15 − log7 30
A. −2.
B. 4.
C. 2.
D. −4.
3
2
x
Câu 115. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 116. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 12.
D. 18.
2
Câu 117. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
!
!
!
x
1
2
2016
4
Câu 118. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T =
.
D. T = 2017.
2017
Câu 119. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Trang 9/10 Mã đề 1
x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
D. −∞.
5
5
Câu 121.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
A. 3.
B. 5.
C. 2.
D. 1.
Câu 120. Tính lim
Câu 122. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Câu 123.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
5
A.
.
B.
.
3
3
!n
4
D.
.
e
!n
5
C. − .
3
Câu 124. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 125. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 126.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
.
B. .
C.
.
A.
2
4
4
Câu 127. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.
√
3
D.
.
12
D. Năm cạnh.
Câu 128. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 129. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
Câu 130. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4.
5.
7.
D
B
9.
6.
C
8.
C
B
D
17. A
14.
B
16.
B
18. A
D
19.
B
23.
C
25. A
20.
B
22.
B
24.
B
26.
B
27.
D
28.
29.
D
30. A
31.
C
32. A
33.
C
34.
35.
37.
D
40.
B
42. A
43.
B
44. A
45. A
C
D
B
46.
47.
C
B
51.
C
48.
B
50.
B
52. A
C
54.
B
C
56.
55. A
57.
59.
B
38.
B
41.
53.
C
36.
39. A
49.
D
12. A
15.
21.
B
10.
D
11. A
13.
C
C
B
58.
C
60.
C
61.
D
62.
63.
D
64.
65.
D
66.
68.
67. A
1
D
B
D
B
D
69.
70. A
B
71.
D
72.
73.
D
74.
75. A
B
D
76. A
77.
D
78.
C
79.
B
80.
C
81.
B
82.
C
83. A
84. A
C
86.
88. A
89.
90. A
91.
92. A
93. A
94.
B
96.
C
87.
D
C
95. A
C
98. A
C
97.
D
99.
D
101.
C
102. A
103.
C
104. A
105.
100.
D
106.
108.
B
110. A
D
107.
C
109.
C
111.
C
112.
D
113.
114.
D
115.
116.
D
117.
B
B
118.
B
119.
120.
B
121.
122.
B
123. A
124.
D
D
C
C
125.
C
126.
C
127.
C
128.
C
129.
C
2