Tải bản đầy đủ (.pdf) (12 trang)

Đề Ôn Toán Thptqg (699).Pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.7 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 2. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. 4.
D. .
A. .
2
4
8
x x
0
Câu 3. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =


.
C. f 0 (0) = ln 10.
D. f 0 (0) = 1.
ln 10
Câu 4. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 5. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 6.

D. 10.

Câu 6. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

Câu 7. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.


C. Câu (I) sai.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 8. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2

B. 3 + 4 2.
C. −3 − 4 2.
A. −3 + 4 2.
Câu 9. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0
0
đến đường
√ thẳng BD bằng


c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

x2 − 3x + 3
Câu 10. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 1.
C. x = 0.
mx − 4
Câu 11. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 26.
Câu 12. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2

D. Khơng có câu nào
sai.


C. un =

n2 − 3n
.
n2


D. 3 − 4 2.
= c. Khoảng cách từ điểm A

a b2 + c2
D. √
.
a2 + b2 + c2
D. x = 3.
D. 45.
D. un =

1 − 2n
.
5n + n2
Trang 1/10 Mã đề 1


Câu 13. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. 4.


C. −1.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.

Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 3
a3 2

A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 15. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.
C. 12.
D. 8.
Câu 16. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 17.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

dx = x + C, C là hằng số.

2−n

Câu 18. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.

B.

xα dx =

Z
D.

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x

C. 1.

D. 0.

x−1 y z+1
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 20. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

Câu 21. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.


C. 8.

x→b

D. 12.

Câu 22. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 23. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.
D. x = −2.
2

Câu 24. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.
Câu 25.
Z Các khẳng định nào sau
Z đây là sai?

A.
Z
C.

Z

D. 2 − log2 3.

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

f (u)dx = F(u) +C.

Trang 2/10 Mã đề 1


Câu 26.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1

5
A.
.
B.
.
3
3

!n
4
C.
.
e

Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. −3.
B. 3.
C. .
3
Câu 28. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.

!n
5
D. − .
3
1

D. − .
3
D. {4; 3}.

Câu 29. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 10 năm.
D. 7 năm.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
D.
.
.
C.
A. √


a + b2
a2 + b2
2 a2 + b2

a2 + b2
Câu 31. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. n lần.
D. 3n3 lần.
2n + 1
Câu 32. Tính giới hạn lim
3n + 2
1
3
2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 33. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 1587 m.
D. 27 m.
Câu 34. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 35. [4-1213d] Cho hai hàm số y =

d = 30◦ , biết S BC là tam giác đều
Câu 36. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39

a 39
A.
.
B.
.
C.
.
D.
.
9
26
16
13
Câu 37. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 38. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.

C. 5.

D. 7.


Câu 39. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 0.

Trang 3/10 Mã đề 1


Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.

Câu 41. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 42. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 9.
C. 27.
D. 3 3.
1 − xy

Câu 43. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
9 11 + 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Hai cạnh.
D. Bốn cạnh.
Câu 45. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD



3
3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .
3
9
3
Câu 46. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
1
Câu 47. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
x+1
Câu 48. Tính lim

bằng
x→+∞ 4x + 3
1
1
C. 1.
D. .
A. 3.
B. .
3
4
Câu 49. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 50. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 51. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.

A. m > − .
4
4
Câu 52. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 2.

C. +∞.

D. 0.

Câu 53. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
24
12
36
6
Trang 4/10 Mã đề 1


Câu 54. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.
D. −5.
1
Câu 55. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
2

Câu 56. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?

A. 0.
B. 3.
C. 2.

D. 1.

2
Câu 57. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.

Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 59. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 8%.
D. 0, 7%.
Câu 60. Dãy số nào có giới hạn bằng 0?!
n
−2

n3 − 3n
.
B. un =
.
A. un =
n+1
3

!n
6
C. un =
.
5

D. un = n2 − 4n.

Câu 61. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 2.

D. 3.

Câu 62. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

D. 11 cạnh.

C. 12 cạnh.


Câu 63. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 64. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 65. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 68.
C. 5.
D.
.
A. 34.
17
ln x p 2
1

Câu 66. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
3
3
9
9
Câu 67. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 68. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 69. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0

ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
2
6
3
Trang 5/10 Mã đề 1


1

Câu 70. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

Câu 71. [1] Giá trị của biểu thức 9log3 12 bằng

A. 2.
B. 24.

D. 144.

C. 4.

Câu 72. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

C. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 73. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 6.
D. 8.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy

một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
Câu 75. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. V = 4π.
D. 8π.


4n2 + 1 − n + 2
bằng
Câu 76. Tính lim
2n − 3
3
A. .

B. +∞.
C. 1.
D. 2.
2

Câu 77. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 4.
D. 108.
1 3
Câu 78. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 79. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 2.
C. .
D. 1.
2
!
3n + 2

2
Câu 80. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
2

2

sin x
Câu 81. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035

A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018
π
Câu 83. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2.

Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
e
e


D. −

1
.
2e
Trang 6/10 Mã đề 1


Z
Câu 85. Cho

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
.
D. .
4
2
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).
3

3

a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
2
4
2
Câu 87. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y =
.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
Câu 88. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.

B. 10 năm.
C. 12 năm.
D. 11 năm.
A. 1.

B. 0.

C.

Câu 89.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
.
B. .
C.
.
D.
.
A.
4
4
2
12
Câu 90. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5

z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
!
1
1
1
Câu 91. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. 2.
D. +∞.
2
2
3a

Câu 92. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
B. .
C.
.
D.
.
A. .
4
3
3
3
1 − 2n
Câu 93. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .

D. 1.
3
3
3


x
+
3
+
6√− x
Câu 94. Tìm giá trị lớn nhất của hàm
số
y
=


A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
a
1
Câu 95. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.

Câu 96. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 2.

D. 4.

Câu 97. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của hình chóp S .ABCD với mặt phẳng (AIC) có diện tích là
Trang 7/10 Mã đề 1



a2 2
A.
.
4


a2 5
B.
.
16


a2 7
C.
.

8

11a2
D.
.
32

Câu 98. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 20.

D. 12.

Câu 99. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

Câu 100. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
7n2 − 2n3 + 1

Câu 101. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
3
3

C. 1.

Câu 102. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 103. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 2 nghiệm.


Câu 104. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2

D. 0.

C. Khối lập phương.
D. Khối 12 mặt đều.


4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vơ nghiệm.
D. 1 nghiệm.


− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

Câu 105. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
Câu 106. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.

C.
.
c+2
c+1
c+2
log2 240 log2 15
Câu 107. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.

D. (2; 2).

D.

3b + 2ac
.
c+3

D. 1.

Câu 108. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 109.

√ Thể tích của tứ diện đều
√cạnh bằng a
a3 2
a3 2
A.
.
B.
.
2
6


a3 2
C.
.
12


a3 2
D.
.
4

Câu 110. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 111. [1] Tập xác định của hàm số y = 2 x−1 là

A. D = R \ {1}.
B. D = (0; +∞).

C. D = R.

D. D = R \ {0}.
! x3 −3mx2 +m
1
Câu 112. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
Trang 8/10 Mã đề 1


Câu 113. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √


a3 3
5a3 3
2a3 3
4a3 3
A.
.

B.
.
C.
.
D.
.
2
3
3
3
2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

D. 7.

Câu 115. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√


a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
d = 300 .
Câu 117. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên

√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
3

3a3 3
a 3
3
3
C. V = 6a .

D. V =
A. V =
.
B. V = 3a 3.
.
2
2
Câu 118. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 119. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.
Câu 120. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.

D. {4; 3}.

Câu 121. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

D. 12.


C. 20.

Câu 122. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 123. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].
2

D. D = R.

Câu 124. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 9/10 Mã đề 1



Câu 125. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 126. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
B.
.
C. .
D.
.
A. .
5
10
5
10
x2 − 5x + 6
Câu 127. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.

C. 0.
D. −1.
log(mx)
Câu 128. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 129. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9

2
4
12
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

a 57
2a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
19
17
19
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1.

D

2.

3.

C

4. A

5.

C

6.

7.

B
D

10.

D

14.


B

C

16.

15. A
D

20.

21. A

D
D

B

24.

25.

B

26. A
C

28. A

29. A


30.

31. A

32.
D

33.
35. A
37.

C

22.

23.
27.

D

18. A

B

19.

C

D

C

34.

D

36.

D

38. A

39. A

40.

41.

C

42.

43.

C

44. A

45. A


C
D

46.

47.

D

49.

C

51. A
53.

B

12.

11. A

17.

D

8. A

9.
13.


B

B

C

48.

D

50.

D

52.

D

54.

D

55.

D

56. A

57.


D

58.

B

59.

D

60.

B

61.

B

62. A

63.

B

64. A

65.
67.


D
C
1

66.

C

68.

C


69. A

70. A
D

71.
73. A

74.

76.

C

82. A
D


84.

90.

D

81.

B

83.

B
D

85.

86. A

87.
C

88.

C

79.

D


80.

B

77.

C

78.

D

72.

B

89. A

B

C

91.

92.

C

93.


94.

C

95.

C

97.

C

D

96.

99.

98.

C

100.

C

101. A

102.


C

103.

104.

C

105.

106. A
108.

107.
B

110.
112.

D

114.

D
C

118.

D


120.
122.

D
B
C
B

109.

C

111.

C

113. A

B

116.

B

115.

D

117.


D

119. A

C
B

121.

D

123.

D

124.

D

125.

126.

D

127.

D

128.


D

129.

D

130.

D

2

B



×