TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàmZtrên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
24
48
48
16
!4x
!2−x
2
3
Câu 3. Tập các số x thỏa mãn
≤
là
#
"3
! 2
#
"
!
2
2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
3
5
5
3
Câu 4. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 5. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.
C. 20.
D. 8.
Câu 6. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 7. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.
D. Không tồn tại.
Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
C.
A.
.
B. a 6.
.
D.
.
2
3
6
Câu 9. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
D.
.
A. 5.
B. 7.
C. .
2
2
Câu 10. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≤ .
D. m ≥ .
A. m > .
4
4
4
4
Câu 11. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
Trang 1/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 12. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.
B. m < 0 ∨ m = 4.
Câu 13. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
4
4
5
Câu 14. Tính lim
n+3
A. 2.
B. 3.
C. 0.
D. 1.
Câu 15. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
log 2x
là
Câu 16. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
x3
2x3 ln 10
x3 ln 10
2x3 ln 10
Câu 17. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.
Câu 18. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
x
2x + 1
Câu 19. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B. a 3.
.
D.
.
C.
3
2
2
Câu 20. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
.
C. 6 3.
.
B.
D.
3
3
x = 1 + 3t
Câu 21. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
3t
x
=
−1
+
2t
x = 1 + 7t
A.
C.
.
y = −10 + 11t . B.
y = 1 + 4t .
y = −10 + 11t . D.
y=1+t
z = −6 − 5t
z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
Câu 22. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 8.
D. 12.
1
Câu 23. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Trang 2/10 Mã đề 1
Câu 25. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 6.
D. 4.
Câu 26. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 27. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
.
B. P = 2i.
C. P = 2.
D. P =
.
A. P =
2
2
Câu 28. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
tan x + m
Câu 29. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 30. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
3
3
3
√
3
2a
3
a
3
a
.
C.
.
D.
.
A. a3 3.
B.
3
3
6
Câu 32. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 33. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
Câu 34. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
4x + 1
Câu 35. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. 9 cạnh.
D. 10 cạnh.
C. Khối bát diện đều.
D. Khối lập phương.
C. −1.
D. 2.
Câu 36. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 37. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (0; +∞).
Câu 38. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
D. Hai mặt.
Câu 39. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
2
2
2
!
1
D. −∞; − .
2
Trang 3/10 Mã đề 1
Câu 40. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + .
D. T = e + 3.
A. T = e + 1.
B. T = 4 + .
e
e
1
Câu 41. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
1
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
Câu 43. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 18.
C. 12.
D.
2
x+2
Câu 44. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 45. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
3
3
3
√
3
a
2
a
3
a
A. 2a2 2.
.
C.
.
D.
.
B.
12
24
24
Câu 46. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A.
.
B. 3.
C. 2.
D. 1.
3
Câu 47. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −4.
C. −2.
D. −7.
27
Câu 48. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
√
Câu 49. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
Câu 50. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+3
c+2
c+2
c+1
Câu 51. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. 9.
D. .
2
2
1
Câu 52. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
Trang 4/10 Mã đề 1
A. 1.
B. 3.
C. 2.
D. 4.
Câu 53.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 54. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
a3 6
2a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 55. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 56.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
8a3 3
a3 3
8a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
3a
Câu 58. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 59. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.
D. x = 0.
Câu 60. [1] Đạo hàm của hàm số y = 2 x là
1
.
x
ln 2
Câu 61. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
A. y0 = 2 x . ln x.
B. y0 = 2 x . ln 2.
C. y0 =
1
2 x . ln
.
D. y0 =
Câu 62. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 63. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
Câu 64. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Trang 5/10 Mã đề 1
Câu 65. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
2
Câu 66. Tính
√ mô đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| =
√
5.
d = 120◦ .
Câu 67. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 4a.
D. 2a.
2
√
√
Câu 68. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x
√
√
A. 2 + 3.
B. 3.
C. 2 3.
D. 3 2.
Câu 69. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 70. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 71. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 72. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 5
11a
a2 2
a 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
!x
1
1−x
Câu 73. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. 1 − log2 3.
B. − log3 2.
C. − log2 3.
D. log2 3.
Câu 74. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.
D. 2.
Câu 75. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
A. √
.
B. √
.
C. √
.
D. 2
a + b2
a2 + b2
a2 + b2
2 a2 + b2
√
Câu 76. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
1
Câu 77. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.
D. 2.
Trang 6/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 78. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m < 0.
Câu 79. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 80. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.
D. m ≥ 0.
[ = 60◦ , S A ⊥ (ABCD).
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
√
a3 2
a3 2
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
12
4
6
Câu 82. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 83. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 12.
log 2x
Câu 84. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 log 2x
1 − 2 ln 2x
.
B. y0 = 3
.
C. y0 =
.
A. y0 = 3
x ln 10
2x ln 10
x3
Câu 85. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 3.
Câu 86. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.
√
2
Câu 87. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
√
A. −7.
B. 6 2.
C. −6 2.
D. 20.
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. 1.
D. 6.
D. 7.
Câu 88. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 89. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 90. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.
Câu 91. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 92. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
Câu 93. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.
2
2
2
Câu 94. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Trang 7/10 Mã đề 1
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. 4.
D. −8.
1
Câu 96. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 95. [1-c] Giá trị biểu thức
Câu 97.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.
A.
Z
C.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
Z x
D.
dx = x + C, C là hằng số.
B.
3
2
Câu 98. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
√
D. 3 − 4 2.
Câu 99. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
3
2
x
Câu 100. [2] Tìm m để giá trị nhỏ nhất
√ của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.
Câu 101. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a 3
2a 3
2a3
4a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 102. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
mx − 4
Câu 103. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 104. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 105. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
!
!
!
x
4
1
2
2016
Câu 106. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
Câu 107. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.
D. Hình lăng trụ.
7n2 − 2n3 + 1
Câu 108. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 1.
3
C. 0.
D.
7
.
3
Trang 8/10 Mã đề 1
Câu 109. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 110. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.
D. 0.
Câu 111. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
2
4
1
Câu 112. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.
D. D = (−∞; 1).
Câu 113. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
x2 +x−2
Câu 114. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R \ {1; 2}.
C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
là
C. D = (−2; 1).
D. D = R.
Câu 115. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 116. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 117. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 0.
D. 2.
Câu 118. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
3
2
Câu 119. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. 2.
B. −2.
C. − .
2
D.
1
.
2
Trang 9/10 Mã đề 1
2
Câu 120. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 7.
D. 5.
Câu 121. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 122. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
Câu 123. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 27.
B. 8.
C. 3 3.
D. 9.
Câu 124. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {5; 2}.
D. {2}.
Câu 125. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 126. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√
√ của hàm số. Khi đó tổng
B. 8 2.
C. 8 3.
D. 16.
A. 7 3.
t
9
Câu 127. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 1.
D. 0.
2mx + 1
1
Câu 128. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. 0.
D. −2.
Câu 129. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 130. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√
√
√ chóp S .ABMN là 3 √
3
a 3
4a3 3
5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
D
5.
6.
C
12.
C
15.
D
17.
D
C
10.
B
13.
B
8.
D
9.
C
4. A
C
7.
11.
2.
C
14.
C
16.
C
18.
C
19. A
B
B
C
20.
22.
D
23. A
24.
D
25. A
26. A
C
21.
27.
C
30.
32.
D
29.
B
31.
B
33.
B
34.
D
35. A
36.
B
37.
38.
B
39.
40.
42.
D
B
44.
D
D
B
C
41.
B
43.
B
45.
C
46.
C
47.
C
48.
C
49.
C
50.
D
51.
B
52. A
53.
54. A
55.
B
57.
B
56.
B
58. A
60.
59. A
61.
B
62.
C
64. A
66.
68.
C
B
D
63.
B
65.
B
67.
B
69.
1
D
D
70.
D
71.
73.
72. A
74.
B
B
76.
C
75. A
77.
C
C
78. A
79. A
80. A
81.
C
82. A
83.
C
84. A
85. A
86.
D
87.
88.
D
89.
C
90.
92. A
94.
91.
C
93.
C
98. A
99. A
100. A
101. A
102. A
103.
104.
D
97.
C
D
C
C
105.
C
106.
D
95.
B
96.
B
107.
108. A
D
B
109.
110.
D
111.
112. A
B
113.
C
C
114.
D
115.
116.
D
117.
118.
D
119.
120.
C
D
B
121.
C
D
122.
B
123.
124.
B
125.
B
127.
B
126.
D
128.
130.
129.
C
B
2
C
C