Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 5 (211)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.59 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 2 .
B. √ .
C. 3 .
e
2e
2 e

D.

2
.
e3

Câu 2. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).


D. d nằm trên P hoặc d ⊥ P.
Câu 3. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
A. 3.
B. 6.
C. 4.
D. 8.
Câu 4. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.
Z 3
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và
Câu 5. Cho I =

d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
 π
Câu 6. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
C.

A. 1.
B.
e .
e .
2
2

D. −3.
a
là phân số tối giản. Giá trị
d
D. P = 4.

D.

1 π3
e .
2

Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6

A.
.
B.
.
C.
.
D.
.
48
24
24
8
1
Câu 8. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
d = 30◦ , biết S BC là tam giác đều
Câu 9. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39

a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
13
16
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
Câu 11. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.


D. 1.

Câu 12. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.

D. Vơ nghiệm.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.

Câu 13. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m > 4.

Trang 1/10 Mã đề 1


Câu 14. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.

C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
4x + 1
bằng?
Câu 15. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −4.

C. 4.

D. −1.

8
Câu 16. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 17. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2

D. 6.

Câu 18. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối

√ chóp S .ABCD là

3
3

a 15
a3 6
a 5
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 19.
Z Các khẳng định
Z nào sau đây là sai?

k f (x)dx = k
f (x)dx, k là hằng số.
!0
Z
f (x)dx = f (x).
C.
A.


Z
B.
Z
D.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

Câu 20.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 9.
D. 27.
Câu 21. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − 2 .

D. − .
2e
e
e
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 22. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A.
.
B.
.
C. 2017.
D.
.
2018
2017
2018
Câu 23. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 24. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.

Câu 25. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 26. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

C. 30.

D. 12.

Câu 27. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
Trang 2/10 Mã đề 1


Câu 28. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
Câu 29. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.

n
C. lim un = c (Với un = c là hằng số).

1
B. lim √ = 0.
n
n
D. lim q = 1 với |q| > 1.

Câu 30. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 7 3.
D. 16.
A. 8 3.
Câu 31. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6

9
18
15

2
3
Câu 32. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. Vơ nghiệm.
Câu 33. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.

D. m > 0.

Câu 34. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Câu 35. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 36. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 37. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 38. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có một hoặc hai.

π
Câu 39. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2 3.
Trang 3/10 Mã đề 1


Câu 40. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 8.
!2x−1
!2−x
3
3
Câu 41. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).


D. 30.

D. (−∞; 1].
x+3
Câu 42. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vô số.
cos n + sin n
Câu 43. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 44. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .
a
Câu 45. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 46. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log π4 x.
Câu 47. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 48. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 9 mặt.

x − 12x + 35
Câu 49. Tính lim
x→5
25 − 5x
2
2

A. − .
B. −∞.
C. .
D. +∞.
5
5
Câu 50. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
2

Câu 51. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
4

2
Câu 52. Dãy số
!n nào có giới hạn bằng3 0?
!n
n − 3n
−2
6
2
A. un =
.
B. un =
.
C. un = n − 4n.
D. un =
.
3
n+1
5
Câu 53.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
A.
.
B. − .
3
3

!n

4
C.
.
e

!n
1
D.
.
3
Trang 4/10 Mã đề 1


Câu 54. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b


tan x + m
nghịch biến trên khoảng
Câu 55. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 56. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 2, 4, 8.
D. 6, 12, 24.
d = 120◦ .
Câu 57. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 3a.
D. 4a.
2

Câu 58. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vơ số.
Câu 59. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.

D. 3 mặt.

Câu 60. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
x+1
bằng
Câu 61. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
6

2
Câu 62. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.
2
3
2
Câu 63. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 64. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4

4
4
4
Câu 65. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
2

Câu 66. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 67. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt


2
2
2
a 7
a 2
11a
a2 5
A.
.
B.
.
C.
.
D.
.
8
4
32
16
Trang 5/10 Mã đề 1


Câu 68. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.

D. x = −2.

Câu 69. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?

A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.

D. 2 nghiệm.

3
2
Câu 70. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. −3 + 4 2.


D. 3 − 4 2.

Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
C. √
.

D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Z 1
Câu 72. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 1.
D. .
4
2
0 0 0
Câu 73. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

3 √

2 3
A. 2.
B. 1.
C.
.
D. 3.
3
Câu 74. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
.
B. 26.
C. 2.
D. 2 13.
A.
13
Câu 75. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
n−1
Câu 76. Tính lim 2

n +2
A. 0.
B. 1.
C. 3.
D. 2.
A. 0.

B.

Câu 77. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 78. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m , 0.
x3 − 1
Câu 79. Tính lim
x→1 x − 1
A. 3.
B. +∞.


C. −∞.

D. 0.

Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 8%.
D. 0, 6%.
2mx + 1
1
Câu 81. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Trang 6/10 Mã đề 1


mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 26.
C. 45.
D. 67.


Câu 82. Tìm m để hàm số y =
A. 34.

Câu 83. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

1 − n2
bằng?
2n2 + 1
1
B. − .
2

Câu 84. [1] Tính lim
A.

B. Chỉ có (II) đúng.

1

.
2

C. Chỉ có (I) đúng.

C.

1
.
3

D. Cả hai câu trên đúng.

D. 0.

Câu 85. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.
D. 1.
2
2
Câu 86.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =


A.
Z
B.

[ f (x) − g(x)]dx =

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 87. Tính lim
A. 0.


2n − 3
bằng
+ 3n + 1
B. −∞.

2n2

D. +∞.

C. 1.

Câu 88. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 89. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
.

B.
.
C.
.
D.
.
A.
12
12
4
6
2n2 − 1
Câu 90. Tính lim 6
3n + n4
A. 2.

B.

2
.
3

C. 0.

1
1
1
Câu 91. [3-1131d] Tính lim +
+ ··· +
1 1+2

1 + 2 + ··· + n
5
3
A. .
B. .
C. +∞.
2
2

D. 1.
!

D. 2.
Trang 7/10 Mã đề 1


Câu 92. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 93. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (1; +∞).
D. (−1; 1).

Câu 94. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.



√ tích khối chóp S .ABC3 √
a 6
a3 2
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
36
6
6


4n2 + 1 − n + 2
Câu 95. Tính lim
bằng
2n − 3
3
B. +∞.
C. 1.
D. 2.
A. .

2
9x
Câu 96. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
D. 2.
A. 1.
B. −1.
C. .
2
Câu 97. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.

D.
.
12
9
2
4
Câu 98. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
2

Câu 99. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.

D. 8.

Câu 100. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
1 + 2 + ··· + n
Câu 101. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?

n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 0.
D. lim un = 1.
Câu 102. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
3

Câu 103. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
6
Câu 104. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0

A. −1.


B. 4.
2n + 1
Câu 105. Tìm giới hạn lim
n+1
A. 0.
B. 1.

C. 2.

D. 6.

C. 2.

D. 3.
Trang 8/10 Mã đề 1


Câu 106. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
1 − 2n
bằng?
Câu 107. [1] Tính lim

3n + 1
1
2
2
B. .
C. .
D. 1.
A. − .
3
3
3

x2 + 3x + 5
Câu 108. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. 0.
D. .
A. 1.
B. − .
4
4
Câu 109. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
log2 240 log2 15

+ log2 1 bằng
Câu 111. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. −8.

C. 1.
D. 4.
Câu 112. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.

Câu 113. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 7.
D. 5.
2
2
Câu 114. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 115. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.


D. 2.

Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
12
24
Câu 117. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. −2.
D. − .
2
2
Trang 9/10 Mã đề 1



Câu 118. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 5.
A. 68.
B. 34.
C.
17
Câu 119. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 120. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 8 m.
D. 24 m.

Câu 121. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).
D. [−1; 2).
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 122. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 123. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.

D. 25 m.
Câu 124. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.

C. 3.

Câu 125.√Thể tích của khối lập phương có cạnh bằng a 2

2a3 2
A.
.
B. V = 2a3 .
C. 2a3 2.
3
Câu 126. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
C. 12.

D. 2.

D. V = a3 2.
D. 10.

Câu 127. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.

D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 128. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. e.
Câu 129. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
12 + 22 + · · · + n2
Câu 130. [3-1133d] Tính lim
n3
2
1
A. .
B. .
3
3

C. +∞.

D. 10 mặt.

D. 0.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1. A

2.

3. A

4.

B

6.

B
B

5.

D

7.

C

8.


9.

C

10.

11. A

12.
D

13.
15.

18.
B

22. A
D

24.

25.

C

26.

27.


C

28.
D

29.

D

D

35.

B

37.

B

39.

40.

D

41.

B


C
B
C

43. A

44.

C

45. A

46.

C

47.

49.

C

50.

51.

D

52. A


53.

D

54. A

D
C

56.

B

57. A

D

58.

59.

C

60. A

61.

C

62. A


63.

D

C

64.

C

66. A

C

67. A
69.

C
B

D

65.

B

33.

38.


55.

C

30.

B

34.

42.

C

20. A

23.

36.

D

16. A

C

21. A

32.


B

14.

17. A
19.

C

68.
D

70.
1

B
C


72.

C

71.
73. A
75.

D


74. A
B

76. A

77. A

78. A

79. A

80.

81. A

82. A
D

83.

84.

B
B

85. A

86.

D


87. A

88.

D

89.

90.

B

91.

D

92.

93.

D

94. A

C

95.

C

B

96. A

97. A

98. A

99.

C

101. A

100.

B

102.

B
B

103.

C

104.

105.


C

106.

107. A

108.

D
B

109.

B

110. A

111.

B

112.

113.

B

114. A


115.

B

116.

C

118.

C

117.

C

119. A

120.

B

B

121.

C

122.


D

123.

C

124.

D

125.

C

126.

127.
129.

C

128.

B

130.

C

2


D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×