TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho z là √
nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
Câu 2. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là√
√
A. 6, 12, 24.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.
D. −2 + 2 ln 2.
y
z+1
x−1
= =
và
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 5. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 2.
D. 3.
Câu 6. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 7. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 8. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a √
5. Thể tích khối chóp S .ABCD
là
√
3
3
3
4a
2a 3
4a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
1
Câu 9. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 10. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 1/10 Mã đề 1
Câu 11. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 8.
C. 9.
D. 3 3.
Câu 12. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
D. f 0 (0) =
1
.
ln 10
Câu 13. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
2
8
Câu 14. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
a3 3
5a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 15. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 15
a3 5
a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
!
!
!
4x
1
2
2016
Câu 16. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 1008.
A. T = 2017.
B. T = 2016.
C. T =
2017
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 18. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
n2
(n + 1)2
5n + n2
5n − 3n2
1 + 2 + ··· + n
Câu 19. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = 0.
A. lim un = .
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 20. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. 1.
C. .
D.
.
2
2
1
Câu 21. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
1 − xy
Câu 22. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 23. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 24. Hàm số y =
A. x = 0.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
C. x = 3.
D. x = 1.
Trang 2/10 Mã đề 1
Câu 25. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
[ = 60◦ , S A ⊥ (ABCD).
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
√
a 2
a 2
a3 3
3
B.
A. a 3.
.
C.
.
D.
.
4
12
6
2
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 2 .
e
e
2 e
D.
1
.
2e3
Câu 28. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 3.
B. 2.
C.
.
D. 1.
3
2−n
Câu 29. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.
D. 2.
Câu 30. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 2
a 5
.
B.
.
C.
.
D.
.
A.
16
8
32
4
Câu 31. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 32. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 33. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
48
24
8
Câu 35. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.
D. Ba mặt.
log(mx)
Câu 36. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 37. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. (−∞; −3].
D. [−3; 1].
Trang 3/10 Mã đề 1
Câu 38. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
Câu 39. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.
C. 8.
D. 6.
Câu 40. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 11 cạnh.
Câu 41. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2
!
1
D.
; +∞ .
2
! x3 −3mx2 +m
1
Câu 42. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
2
2
Câu 43. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ Giá trị nhỏ nhất √
√ lượt là
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 2 2.
Câu 44. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 45.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6
12
4
2
Câu 46. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. − < m < 0.
D. m > − .
4
4
Câu 47. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
1
Câu 48. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 49. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 50. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −7.
C.
.
D. −2.
27
Câu 51. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − .
D. − 2 .
2e
e
e
Trang 4/10 Mã đề 1
Câu 52. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).
D. (−∞; −1).
Câu 53. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 54. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1
Câu 55. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 56. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
1
Câu 57. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 58. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 59. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 2.
D. 0.
Câu 60. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+2
c+1
c+3
c+2
!
3n + 2
2
Câu 61. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
√
3
3
√
2a
3
a
3
a
3
A. a3 3.
B.
.
C.
.
D.
.
3
6
3
Câu 63. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
Trang 5/10 Mã đề 1
Câu 64. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
Câu 65. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
n
C. lim q = 1 với |q| > 1.
C. 12.
D. 30.
1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
√
√
Câu 66. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
A. Phần thực là √2 − 1, phần ảo là √
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
B. lim
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
16
48
24
48
Câu 68. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim f (x) = f (a).
x→a
Câu 69. [1] Biết log6
A. 108.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
√
a = 2 thì log6 a bằng
B. 36.
C. 6.
D. 4.
Câu 70. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
√
Câu 71. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
3
12
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 72. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
Câu 73. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 74. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2
2
2
2
3
4
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
Câu 75. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
x−1
Câu 76. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
√
A. 2 2.
B. 6.
C. 2.
D. 2 3.
Trang 6/10 Mã đề 1
2
Câu 77. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 4.
D. 2.
Câu 78. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 79. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 5.
D. 7.
2
2
√
Câu 80. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Câu 81. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 7.
D. 3.
Câu 82. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 9.
D. .
A. 6.
B. .
2
2
Z 3
x
a
a
Câu 83. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
1
Câu 84. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
Câu 85. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
!
1
1
1
Câu 86. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
C. .
D. 2.
A. +∞.
B. .
2
2
Câu 87. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 88. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
3
5
25
Câu 89. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 7/10 Mã đề 1
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 90. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. a.
B. .
C. .
D.
.
2
3
2
Câu 91. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 12 năm.
D. 10 năm.
Câu 92. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 93. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. a 2.
C. 2a 2.
D.
.
A.
2
4
d = 300 .
Câu 94. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
√
a3 3
3a3 3
3
3
A. V =
D. V =
.
B. V = 6a .
C. V = 3a 3.
.
2
2
√
Câu 95. Xác định phần ảo của số phức z = ( 2 + 3i)2 √
√
A. −7.
B. 7.
C. 6 2.
D. −6 2.
Câu 96. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 97. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
√
a3 3
a3 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4
Câu 99. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Trang 8/10 Mã đề 1
Câu 100. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 4.
D. 5.
3
2
Câu 101. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
√
D. 3 + 4 2.
Câu 102. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≤ .
D. m > .
A. m ≥ .
4
4
4
4
Câu 103. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 5 mặt.
D. 3 mặt.
Câu 104. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 105. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 106. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
với
đáy
và
S
C
=
a
3. Thể
√
√ tích khối chóp S .ABC
√là
√
3
3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 107. √
Tính mơ đun của số phức √
z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 109. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
D. m > 0.
Câu 110.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 2.
C. 2.
D. 1.
A. 10.
Câu 111. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e.
D. 2e + 1.
e
√
Câu 112. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
là
√
3
10a 3
A. 20a3 .
B. 40a3 .
C.
.
D. 10a3 .
3
Câu 114. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
D. aαβ = (aα )β .
a
Câu 115. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.
D. 7 mặt.
Trang 9/10 Mã đề 1
Câu 116. √Tìm giá trị lớn nhất của
√ hàm số y =
A. 2 + 3.
B. 3 2.
√
√
x + 3 + √6 − x
C. 2 3.
D. 3.
Câu 117. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 119. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
8
1
A. .
B. .
C. .
D. .
9
3
9
3
Câu 120. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Câu 121. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 34.
C. 68.
D. 5.
A.
17
Câu 122. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
[ = 60◦ , S O
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
2a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
Câu 124. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 125. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 126. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 127. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
24
12
6
Câu 128. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B.
.
C. a 6.
D. a 3.
2
Trang 10/10 Mã đề 1
Câu 129.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 130. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2. A
3. A
5.
B
6. A
7.
B
8. A
10.
9. A
11.
13.
D
D
12.
14.
B
C
B
D
16.
C
15.
17.
C
4.
B
C
18.
19. A
20. A
21.
D
22.
D
D
23.
B
24.
25.
B
26.
B
28.
B
29. A
30.
B
31. A
32.
27.
C
33.
D
34. A
35.
D
36.
37.
D
38. A
39.
D
40.
41.
45.
D
44.
D
48.
49.
D
50.
B
52.
53. A
D
B
D
C
D
B
54.
55.
B
56. A
57.
B
58.
59.
C
46.
B
47.
51.
D
42.
C
43.
C
C
61.
D
C
B
60.
D
62.
D
63.
C
64.
65.
C
66.
C
68.
C
67.
D
1
B
69.
70.
D
71.
C
72. A
73.
D
74.
75.
D
76.
77.
D
C
78.
C
D
B
79. A
80. A
81. A
82.
B
B
83.
D
84.
85.
D
86.
87. A
88. A
89.
C
90. A
91.
C
92.
95.
C
96. A
97.
C
98. A
B
102.
103. A
104. A
105.
D
108.
109.
B
110.
111.
B
112. A
113. A
114.
115. A
116.
117.
D
129.
D
C
B
D
120.
121. A
122.
C
B
127.
B
118.
C
123.
C
106. A
107. A
119.
D
100. A
101. A
125.
B
94.
93. A
99.
D
C
2
B
124.
C
126.
C
128.
C
130.
B
C
D